
Compositional Models of Vector-based Semantics:

From Theory to Tractable Implementation

Day 1: What’s in a vector-based model of compositionality?

Gijs Wijnholds & Michael Moortgat

ESSLLI 2022

Abstract

Vector-based compositional architectures combine a distributional view of word
meanings with a modelling of the syntax-semantics interface as a structure-preserving
map relating syntactic categories (types) and derivations to their counterparts in a
corresponding meaning algebra.

This design is theoretically attractive, but faces challenges when it comes to
large-scale practical applications. First there is the curse of dimensionality resulting
from the fact that semantic spaces directly reflect the complexity of the types of the
syntactic front end. Secondly, modelling of the meaning algebra in terms of finite
dimensional vector spaces and linear maps means that vital information encoded in
syntactic derivations is lost in translation.

The course compares and evaluates methods that are being proposed to face
these challenges. Participants gain a thorough understanding of theoretical and
practical issues involved, and acquire hands-on experience with a set of user-friendly
tools and resources.

Course Information

Website: https://compositioncalculus.sites.uu.nl/course/

Outline:

Day 1. What’s in a vector-based model of compositionality? Michael & Gijs

Day 2. The curse of dimensionality Gijs

Day 3. Learning a lexicon for supertagging Michael

Day 4. Parsing with Graph Neural Networks Kokos

Day 5. Evaluation: Experimenting with semantic tasks Gijs

Team:

Gijs Wijnholds Michael Moortgat Kokos Kogkalidis
Lecturer Lecturer Teaching Assistant

https://compositioncalculus.sites.uu.nl/course/

Today: what’s in a compositional Vector-based model?

Day plan

I What is compositionality?

I What is the syntactic backbone for compositional vector-based models?

I What is vector-based semantics?

I Linking syntax to semantics; using vectors/embeddings

I Ingredients for succes: learnable representations, learnable grammars, learnable
parser, model evaluation

Background reading Some useful textbook refs:

I R. Moot and Ch. Retoré, 2012, The Logic of Categorial Grammars, LNCS 6850,
Springer. url

I Sheldon Axler, 2015, Linear Algebra Done Right, 3rd edition, Undergraduate
Texts in Mathematics, Springer. url

https://link.springer.com/book/10.1007/978-3-642-31555-8
https://link.springer.com/book/10.1007/978-3-319-11080-6

Compositional interpretation: Montague’s view

Frege’s Principle a central design principle of computational semantics:

‘the meaning of an expression is a function of the meaning of its parts and
of the way they are syntactically combined’ (Partee)

Montague gives Frege’s Principle a precise mathematical form:

Source
h−−−−−−→ Target

I Source: a multi-sorted algebra for syntax 〈(As)s∈S, (Fγ)γ∈Γ〉

I Target: a multi-sorted algebra for semantics 〈(Bt)t∈T , (Gδ)δ∈∆〉

I Interpretation: homomorphism h, i.e. a structure-preserving map

h respects the sorts: {h(a) | a ∈ As} ⊆ Bσ(s)

h respects the operations: h(Fγ(a1, . . . , an)) = Gρ(γ)(h(a1), . . . , h(an))

Montague, Universal Grammar, 1970

Sneak Peek: Vector-Based Compositional Interpretation

M’s program in a type-logical setting, with two-step interpretation homomorphism:

(N)L

type logic for
syntax

sCCC

derivational
semantics

sCCC+Frob

lexical
semantics

hder hlex

I Front end: (N)L, Lambek-style syntactic calculus

model: residuated monoid/semigroup/groupoid

I Target for hder : sCCC, symmetric compact closed category

model: FVect, finite-dimensional vector spaces and linear maps

I Target for hlex : FVect expanded with with Frobenius algebras

word-internal semantics, allowing for ‘duplication’/‘merging’ of information.

Syntax

Lambek’s program for syntax Slogan: ‘parsing-as-deduction’

I categories (‘noun’, ‘verb’, . . .) ; logical formulas/types:

I well-formedness judgement; formal derivation/‘proof’ in grammatical type logic

Types

Basic types We start from a small set of atomic types for expressions that are con-
sidered ‘complete’. For example

I s sentences

I n common nouns (‘poet’, ‘politician’, . . .)

I np noun phrases (‘Macron’, ‘the president’, . . .)

Types The full set of types is given by the grammar below (p: atomic types)

A,B ::= p | A •B | A/B | B\A

I A •B: concatenation ‘A and then B’

I A/B: ‘A over B’; right division: combines with B on the right to produce A

I B\A: ‘B under A’; left division: combines with B on the left to produce A

Syntactic calculus (N)L

Lambek’s original presentation of (N)L considers statements A −→ B, i.e. derivability
is modelled as a relation holding between types.

Pre-order laws The derivability relation is reflexive and transitive:

A −→ A

A −→ B B −→ C

A −→ C

Residuation laws

B −→ A\C iff A •B −→ C iff A −→ C/B [L61]

Structural laws
A • (B • C)←→ (A •B) • C [L58]

I •A←→ A←→ A • I [L88]

L61: NL, [Lambek, 1961]; L58: L, [Lambek, 1958]; L88: [Lambek, 1988]

Model: residuated monoids/groupoids

The intended models for the type logic are the multiplicative systems freely generated
by the words of the language under concatenation.

Types as sets of expressions, i.e. subsets of a groupoid/semigroup/monoid 〈M, ·〉 with

A •B = {a · b ∈M | a ∈ A ∧ b ∈ B}
C/B = {a ∈M | ∀b∈B a · b ∈ C}
A\C = {b ∈M | ∀a∈A a · b ∈ C}
I = {1}

I groupoid [L61], types assigned to phrases, bracketed strings

I semigroup [L58], types assigned to strings, associative multiplication

I monoid [L88], multiplicative unit, empty string

Background: category theory

Category theory: abstract study of mathematical structures. Ingredients:

I objects: the elements of a category

I morphisms (‘arrows’): transformations, notation f : A −→ B

- for each object we have the identity morphism, 1A : A −→ A

- composition: given f : A −→ B and g : B −→ C, we have g ◦ f : A −→ C

◦ associative: f ◦(g◦h) = (f ◦g)◦h; given f : A→ B we have f ◦1A = f , 1B ◦f = f .

Deductive systems as categories Objects ; formulas; morphisms ; derivations;
operations on morphisms ; rules of inference. For NL add:

f : A •B −→ C

.f : A −→ C/B

g : A −→ C/B

.−1g : A •B −→ C

f : A •B −→ C

/f : B −→ A\C
g : B −→ A\C

/−1g : A •B −→ C

with appropriate conditions guaranteeing this is a well-behaved category . . .

[Wijnholds, 2015]

Example: ‘the temperature rises’

np/n −→ np/n
1np/n

(np/n) • n −→ np
.−1

np\s −→ np\s
1np\s

np • (np\s) −→ s
/−1

np −→ s/(np\s)
.

(np/n) • n −→ s/(np\s)
◦

((np/n)︸ ︷︷ ︸
the

• n/︸︷︷︸
temperature

) • (np\s)︸ ︷︷ ︸
rises

−→ s
.−1

Combinator for this derivation: .−1((. /−1 1np\s) ◦ (.−11np/n))

Remark bracketing of the • formula ≈ tree structure.

rises

temperaturethe

Curry-Howard-Lambek correspondence

The categorical presentation is rather heavy-handed. In what follows we freely move
between different perspectives on type logics that are essentially equivalent, thanks to
the Curry-Howard-Lambek correspondence

CHL originally:

I math: category theory Cartesian closed categories

I logic: deductive systems Intuitionistic logic

I computation: proofs as programs λ calculus

[Lambek and Scott, 1986]

A user-friendly format: Natural Deduction

Structures, sequents Derivability as a relation between structures and types. A
sequent is a statement Γ ` A with A a type, Γ a structure. Grammar for structures:

Γ,∆ ::= A | Γ ·∆

i.e. atomic structures: types; complex structures are formed with the 2-place ·, struc-
tural counterpart of •.

Axiom, logical rules For the base logic, we have the axiom A ` A and as logical
inference rules, for each connective an elimination rule and an introduction rule.

Γ ` A ∆ ` A\B
Γ ·∆ ` B \E

Γ ` B/A ∆ ` A
Γ ·∆ ` B /E

A · Γ ` B
Γ ` A\B

\I Γ ·A ` B
Γ ` B/A

/I

Γ ` A ∆ ` B
Γ ·∆ ` A •B •I

∆ ` A •B Γ[A ·B] ` C
Γ[∆] ` C •E

Notation: Γ[∆] for a structure Γ containing a substructure ∆

Examples

Hypothetical reasoning Type lifting.

np ` np Ax np\s ` np\s Ax

np · np\s ` s
\E

np ` s/(np\s)
/I

Official format vs steno Use words instead of their types left of `. Compare

np/n ` np/n Ax
n ` n Ax

(np/n) · n ` np
/E

np\s ` np\s Ax

((np/n)︸ ︷︷ ︸
the

· n/︸︷︷︸
temperature

) · (np\s)︸ ︷︷ ︸
rises

` s
\E

the ` np/n Ax
temperature ` n Ax

the · temperature ` np /E
rises ` np\s Ax

(the · temperature) · rises ` s
\E

N.D.: structural rules

Postulate extensions of the base logic take the form of structural rules. Formula
variables ; structure variables (in context).

Associativity Compare

(A •B) • C −→ A • (B • C) ;
Γ[∆ · (∆′ ·∆′′)] ` D
Γ[(∆ ·∆′) ·∆′′] ` D

A • (B • C) −→ (A •B) • C ;
Γ[(∆ ·∆′) ·∆′′] ` D
Γ[∆ · (∆′ ·∆′′)] ` D

Implicit structural rules A sugared presentation of L leaves restructuring under as-
sociativity implicit, using sequents Γ ` B with Γ a list of formulas A1, . . . , An.

Your turn

Monotonicity Use the categorical presentation of NL to show that the monotonicity
laws below are derived rules of inference.

A→ B C → D

A • C → B •D
• A→ B C → D

A/D → B/C
/

C → D A→ B

D\A→ C\B
\

Sequents and arrows establish the following:

for every N.D. proof X ` B there is an arrow f : X −→ B

where X is the formula version of X: A = A, X · Y = X • Y .

Ambiguity: Lexical

Distinct derivations resulting from lexical ambiguity.

Noun modification

Fallada
np

wrote
(np\s)/np

a
np/n

book
n

on
(n\n)/np

drugs
np

(on · drugs) ` n\n
/E

(book · (on · drugs)) ` n
\E

(a · (book · (on · drugs))) ` np
/E

wrote · (a · (book · (on · drugs)))) ` np\s
/E

(Fallada · (wrote · (a · (book · (on · drugs))))) ` s
\E

Verb phrase modification

Fallada
np

wrote
(np\s)/np

a
np/n

book
n

(a · book) ` np
/E

wrote · (a · book) ` np\s
/E

on
((np\s)\(np\s))/np

drugs
np

(on · drugs) ` (np\s)\(np\s)
/E

(wrote · (a · book)) · (on · drugs) ` np\s
(Fallada · ((wrote · (a · book)) · (on · drugs))) ` s

\E

Ambiguity: Derivational

Consider the L derivation below:

French
n/n

wine
n

French wine ` n /E
drinker
n\n

French wine drinker ` n \E

French
n/n

wine
n

drinker
n\n

wine drinker ` n \E

French wine drinker ` n /E

Compositional interpretation Meaning must be assigned to derivational history, not
to strings. We can keep track of the derivational history by associating a proof with a
term recording the inference steps.

Proofs and terms

N.D. derivations are now seen as typing judgements, checking whether a program
(=term) is well-typed. Sequents take the form

x1 : A1, . . . , xn : An `M : B xi fresh

meaning: program M is a well-formed expression of type B given type declarations
x1 : A1, . . . , xn : An (a typing environment).

We compare the implication fragment of (N)L with the semantic type calculus LP,
with non-directional types A(B.

Proofs and terms: syntactic calculus

Types
A,B ::= s | np | n | A\B | B/A

Terms left vs right application/abstraction

M,N ::= x | λrx.M | λlx.M | (M nN) | (N oM)

Typing rules Axiom x : A ` x : A

Γ · x : A `M : B
Γ ` λrx.M : B/A

I/
x : A · Γ `M : B

Γ ` λlx.M : A\B
I\

Γ `M : B/A ∆ ` N : A

Γ ·∆ ` (M nN) : B
E/

Γ ` N : A ∆ `M : A\B
Γ ·∆ ` (N oM) : B

E\

Semantic type calculus: LP

LP extends L with product commutativity. LP is a.k.a. MILL, Multiplicative Intuition-
istic Linear Logic. In MILL, the slashes /, \ collapse to linear implication (.

Types, terms A,B ::= e | t | A(B; M,N ::= x | λx.M |M N

Typing rules Axiom x : A ` x : A

Γ, x : A `M : B

Γ ` λx.M : A(B
((I) Γ `M : A(B ∆ ` N : A

Γ,∆ `M N : B
((E)

LP: Set Theoretic Models

Each type A is associated with a semantic domain DA, based on a non-empty set E
(the universe):

De = E Dt = {true, false} DA(B = DDA

B linear functions from DA to DB

Semantic value DA 3 JMAKg semantic value of an expression M of type A w.r.t.
assignment g:

I Atoms: JxAKg = g(xA)

I Application: J(MA(B NA)Kg = JMA(BKgJNAKg

I Abstraction:

JλxA.MBKg = f ∈ DDA

B such that for each d ∈ DA, f(d) = JMBKg′

where g′ is exactly like g except perhaps that xA is assigned the value d

Add interpretation function for constants, if present: DA 3 JcAKIg = I(cA)

Compositional Interpretation: Toy Example

An example of compositional interpretation taken from your Intro Formal Semantics.

The homomorphism d·e maps types and derivations of the syntactic source logic to
their counterparts in the target logic for semantics.

(N)Ls,np,n
/,\

d·e
−−−−−−→ LP/MILLe,t(

Types

dse = t dnpe = e dne = e(t dA\Be = dB/Ae = dAe(dBe

Terms
dxe = x̃

dλlx.M)e = dλrx.Me = λx̃.dMe
dN oMe = dM nNe = dMe dNe

Illustration: ‘paper that Bob rejected’

paper
n

that
(n\n)/(s/np)

Bob
np

rejected

(np\s)/np [np ` np]1

rejected · np ` np\s
[/E]

Bob · (rejected · np) ` s
[\E]

(Bob · rejected) · np ` s
[Ar]

Bob · rejected ` s/np [/I]1

that · (Bob · rejected) ` n\n
[/E]

paper · (that · (Bob · rejected)) ` n
[\E]

Source term M = paper o (that n λrx.(Bob o (rejected n x))) : n

Translation: derivational semantics word meanings as black boxes

dMe = ((dthate λx.((drejectede x) dBobe)) dpapere) : e(t

Illustration (cont’d)

Lexical semantics Assuming the target signature includes constants papere(t, Bobe,
rejectede(e(t, ∧t(t(t, we can unpack the black box word meanings:

word syn type d·e sem type
paper n paper e(t
that (n\n)/(s/np) λxλyλ!z.((y z) ∧ (x z)) (e(t)((e(t)((! e(t)
Bob np Bob e
rejected (np\s)/np rejected e(e(t

non-linear recipe for ‘that’: z is duplicated �

Substituting these in dMe

dMe = ((dthate λx.((drejectede x) dBobe)) dpapere) : e(t

(and simplifying) produces the final result

λx!.((paper x) ∧ ((rejected x) Bob)) : ! e(t

What’s next

After the break, you’ll get acquainted with a target system that readily lends itself
to a vector-based interpretation: sCCC, the (symmetric) compact closed category of
FVect, finite dimensional vector spaces and linear maps.

Working out a compositional vector-based interpretation will involve the same interplay
of derivational and lexical semantics that we just saw.

Source papers [Coecke et al., 2010], [Coecke et al., 2013]

Vectors, Tensors, Linear Maps

Similar words occur in similar contexts

Motivation

Guess the word...

A bottle of tesguino is on the table.
Everybody likes tesguino .

Tesguino makes you drunk.
We make tesguino out of corn.

For example Tesguino: a fermented drink like beer but made of corn.

Generally speaking words that often co-occur will have a meaningful relation; words
occurring in the same context, will carry similar meaning.

The slogan “You will know a word by the company it keeps”

Count-Based Vectors: Construction

Count! For each focus word we count the words that we find within a suitable context
window:

Word-Context Matrix

• Being in a context means being in a window of k-words around it.

• For example, here are 7-word windows around four words of the Brown
corpus:

15.1 • WORDS AND VECTORS 5

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 15.4 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for
the word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Fig. 15.5 shows a spatial visualization. Note in Fig. 15.4 that the two words
apricot and pineapple are more similar (both pinch and sugar tend to occur in their
window) while digital and information are more similar.

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 15.5 A spatial visualization of word vectors for digital and information, showing
just two of the dimensions, corresponding to the words data and result.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

The size of the window used to collect counts can vary based on the goals of
the representation, but is generally between 1 and 8 words on each side of the target
word (for a total context of 3-17 words). In general, the shorter the window, the
more syntactic the representations, since the information is coming from immedi-
ately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish
two kinds of similarity or association between words (Schütze and Pedersen, 1993).
Two words have first-order co-occurrence (sometimes called syntagmatic associ-first-order

co-occurrence
ation) if they are typically nearby each other. Thus wrote is a first-order associate
of book or poem. Two words have second-order co-occurrence (sometimes calledsecond-order

co-occurrence

Vectors! Focuswords w.r.t context words produce vectors:

Word-Context Matrix15.1 • WORDS AND VECTORS 5

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 15.4 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for
the word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Fig. 15.5 shows a spatial visualization. Note in Fig. 15.4 that the two words
apricot and pineapple are more similar (both pinch and sugar tend to occur in their
window) while digital and information are more similar.

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 15.5 A spatial visualization of word vectors for digital and information, showing
just two of the dimensions, corresponding to the words data and result.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

The size of the window used to collect counts can vary based on the goals of
the representation, but is generally between 1 and 8 words on each side of the target
word (for a total context of 3-17 words). In general, the shorter the window, the
more syntactic the representations, since the information is coming from immedi-
ately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish
two kinds of similarity or association between words (Schütze and Pedersen, 1993).
Two words have first-order co-occurrence (sometimes called syntagmatic associ-first-order

co-occurrence
ation) if they are typically nearby each other. Thus wrote is a first-order associate
of book or poem. Two words have second-order co-occurrence (sometimes calledsecond-order

co-occurrence

15.1 • WORDS AND VECTORS 5

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 15.4 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for
the word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Fig. 15.5 shows a spatial visualization. Note in Fig. 15.4 that the two words
apricot and pineapple are more similar (both pinch and sugar tend to occur in their
window) while digital and information are more similar.

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 15.5 A spatial visualization of word vectors for digital and information, showing
just two of the dimensions, corresponding to the words data and result.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

The size of the window used to collect counts can vary based on the goals of
the representation, but is generally between 1 and 8 words on each side of the target
word (for a total context of 3-17 words). In general, the shorter the window, the
more syntactic the representations, since the information is coming from immedi-
ately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish
two kinds of similarity or association between words (Schütze and Pedersen, 1993).
Two words have first-order co-occurrence (sometimes called syntagmatic associ-first-order

co-occurrence
ation) if they are typically nearby each other. Thus wrote is a first-order associate
of book or poem. Two words have second-order co-occurrence (sometimes calledsecond-order

co-occurrence

15.1 • WORDS AND VECTORS 5

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 15.4 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for
the word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Fig. 15.5 shows a spatial visualization. Note in Fig. 15.4 that the two words
apricot and pineapple are more similar (both pinch and sugar tend to occur in their
window) while digital and information are more similar.

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 15.5 A spatial visualization of word vectors for digital and information, showing
just two of the dimensions, corresponding to the words data and result.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

The size of the window used to collect counts can vary based on the goals of
the representation, but is generally between 1 and 8 words on each side of the target
word (for a total context of 3-17 words). In general, the shorter the window, the
more syntactic the representations, since the information is coming from immedi-
ately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish
two kinds of similarity or association between words (Schütze and Pedersen, 1993).
Two words have first-order co-occurrence (sometimes called syntagmatic associ-first-order

co-occurrence
ation) if they are typically nearby each other. Thus wrote is a first-order associate
of book or poem. Two words have second-order co-occurrence (sometimes calledsecond-order

co-occurrence

rows: focus words
columns: context

Normalise! To mitigate the influence of highly frequent words we may normalize the
obtained vectors, e.g. using pointwise mutual information:

PMI(w, c) = log

(
p(w, c)

p(w)p(c)

)
Here, p(w, c) is the frequency of c occurring in the context of w and p(w) the total
frequency of w in the corpus.

Count-Based Vectors: Properties

Features The elements of these vectors indicate how strong a word meaning is defined
by another word. Aka: each element of a vector is an interpretable feature that gives
insight into the meaning of the word.

Features Interpreting operations on features is then relatively straightforward:

−→w1 +−→w2 Joining features, we get a less specific ‘word’

−→w1 �−→w2 Intersecting features, we get a more specific ‘word’

Intersecting context We compare word vectors in a space:

Word-Context Matrix15.1 • WORDS AND VECTORS 5

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 15.4 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for
the word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Fig. 15.5 shows a spatial visualization. Note in Fig. 15.4 that the two words
apricot and pineapple are more similar (both pinch and sugar tend to occur in their
window) while digital and information are more similar.

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 15.5 A spatial visualization of word vectors for digital and information, showing
just two of the dimensions, corresponding to the words data and result.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

The size of the window used to collect counts can vary based on the goals of
the representation, but is generally between 1 and 8 words on each side of the target
word (for a total context of 3-17 words). In general, the shorter the window, the
more syntactic the representations, since the information is coming from immedi-
ately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish
two kinds of similarity or association between words (Schütze and Pedersen, 1993).
Two words have first-order co-occurrence (sometimes called syntagmatic associ-first-order

co-occurrence
ation) if they are typically nearby each other. Thus wrote is a first-order associate
of book or poem. Two words have second-order co-occurrence (sometimes calledsecond-order

co-occurrence

15.1 • WORDS AND VECTORS 5

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 15.4 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for
the word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Fig. 15.5 shows a spatial visualization. Note in Fig. 15.4 that the two words
apricot and pineapple are more similar (both pinch and sugar tend to occur in their
window) while digital and information are more similar.

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 15.5 A spatial visualization of word vectors for digital and information, showing
just two of the dimensions, corresponding to the words data and result.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

The size of the window used to collect counts can vary based on the goals of
the representation, but is generally between 1 and 8 words on each side of the target
word (for a total context of 3-17 words). In general, the shorter the window, the
more syntactic the representations, since the information is coming from immedi-
ately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish
two kinds of similarity or association between words (Schütze and Pedersen, 1993).
Two words have first-order co-occurrence (sometimes called syntagmatic associ-first-order

co-occurrence
ation) if they are typically nearby each other. Thus wrote is a first-order associate
of book or poem. Two words have second-order co-occurrence (sometimes calledsecond-order

co-occurrence

15.1 • WORDS AND VECTORS 5

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 15.4 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for
the word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Fig. 15.5 shows a spatial visualization. Note in Fig. 15.4 that the two words
apricot and pineapple are more similar (both pinch and sugar tend to occur in their
window) while digital and information are more similar.

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 15.5 A spatial visualization of word vectors for digital and information, showing
just two of the dimensions, corresponding to the words data and result.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

The size of the window used to collect counts can vary based on the goals of
the representation, but is generally between 1 and 8 words on each side of the target
word (for a total context of 3-17 words). In general, the shorter the window, the
more syntactic the representations, since the information is coming from immedi-
ately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish
two kinds of similarity or association between words (Schütze and Pedersen, 1993).
Two words have first-order co-occurrence (sometimes called syntagmatic associ-first-order

co-occurrence
ation) if they are typically nearby each other. Thus wrote is a first-order associate
of book or poem. Two words have second-order co-occurrence (sometimes calledsecond-order

co-occurrence

No. of context words =
dimension of the vector
space

Comparing Vectors

Angles We compute the similarity between words using the cosine of the angle be-
tween their vectors:

−→w1

−→w2

θ

sim(−→w1,
−→w2) = cos(θ) =

−→w1·−→w2

|−→w1||−→w2|

Example Say we have
−−−→
digital = (2, 1, 0, 1) and

−−−−−−−→
information = (1, 6, 0, 4). We calcu-

late:

sim(
−−−→
digital,

−−−−−−−→
information) =

2 · 1 + 1 · 6 + 0 · 0 + 1 · 4
√

22 + 12 + 12
√

12 + 62 + 42
=

12
√

6
√

53
=

12

17.83
= 0.67

So: ‘digital’ and ‘information’ are similar!

The values of sim range from −1 to 1

The future of distributional semantics

Context is everything Because vector representations are suitable neural network
input, countless new models have popped up to learn word embeddings.

Skipgram Embeddings that predict the context rather than count it, by maximizing:∑
c∈C

log σ(t · c) +
∑
c∈C

log σ(−t · c)

BERT Uses masked language modelling on massive text corpora to create a function
from a sentential context to an individual word representation:

The [MASK] is rising and all life on [MASK] will be [MASK] soon

We maximize
1

n

n∑
k=1

log p(mi|w1, ..., wm)

This gives us dynamic representations; a change of a single context word changes the
embedding for the target word.

In this course We discuss skipgram in more detail tomorrow, and deal with BERT
on Friday.

Compositional Vector-based Semantics with

Tensors and Linear Maps

⊗

Vectors

Given a vector space V spanned by a basis {ei}i, we write a vector −→v as a linear
combination of basis vectors:

−→v = a1
−→e1 + ...+ an

−→en

We may use shorthand: v =
∑

i ai
−→ei . When the basis is obvious/irrelevant, we just

write down coefficients: −→v = (a1, ..., an).

Dimension Every vector space V has a dimension corresponding to the number of
basis vectors of V .

Ex: vector −→v = (1, 2, 3, 4) is in the a space V with dim(V) = 4.

Dot product The standard inner product between two vector of the same dimension
is the sum of their element wise multiplication:

−→v = a1
−→v1 + ...+ an

−→vn−→w = b1
−→w1 + ...+ bn

−→wn
〈−→v | −→w 〉 = a1b1 + ...+ anbn = aibi

Note: (Orthonormal) basis vectors êi, êj have dot product 1 when i = j, and 0
otherwise.

Tensors

Tensor Product We can join two vector spaces V and W with the tensor product.

We write V ⊗W and this space has dimension dim(V ⊗W) = dim(V)dim(W).

The concrete tensor product between two vectors −→u =
∑

i ai
−→ui and −→v =

∑
j bj
−→vj is

given by all possible multiplications:

−→u ⊗−→v =
∑

ij aibj(
−→ui ⊗−→vj) = uivj

Example (
1
2

)
⊗

3
4
5

 =

(
3 4 5
6 8 10

)

Bilinearity The tensor product satisfies

(a · −→v)⊗−→w = a · (−→v ⊗−→w) = −→v ⊗ (a · −→w)

(
2
4

)
⊗

3
4
5

 =

(
6 8 10
12 16 20

)

Brain Teaser 1

Commutativity is the tensor product of vectors commutative? I.e. do we have
−→u ⊗−→v = −→v ⊗−→u ?

Symmetry is the tensor product between vector spaces symmetric? I.e. do we have
V ⊗W ∼= W ⊗ V ?

Commutativity

�
(

1
2

)
⊗

3
4
5

 =

(
3 4 5
6 8 10

) 3
4
5

⊗(1
2

)
=

3 6
4 8
5 10

Symmetry

XYes, because

((
1
2

)
⊗

3
4
5

)⊥ =

(
3 4 5
6 8 10

)⊥
=

3 6
4 8
5 10

 =

3
4
5

⊗(1
2

)

Linear maps

Linear map f : V →W is a linear map if

f(−→u +−→v) = f(−→u) + f(−→v)

f(a · −→v) = a · f(−→v)

We just write V →W for all linear maps from V to W (which is a vector space!)

Representation Any linear map can be represented by a matrix. The matrix M of a
map f , when multiplied with a vector v, gives f(−→v) = M ×−→v = Mijvj (dot product
along columns)

Example 3 6
4 8
5 10

×(2
1

)
=

 3 · 2 + 6 · 1
4 · 2 + 8 · 1
5 · 2 + 10 · 1

 =

12
16
20

Dual spaces We write V ∗ = V → R for the dual space of V . In concrete calculation
we often simplify with V ∗ ∼= V (because we have an orthonormal basis) more on
this on Thursday!

Standard maps

Identity

1V
(∑

i ci
−→vi
)

=
∑

i ci
−→vi (= δij)

Composition f : V →W, g : W → U gives g ◦ f : V → U(
g ◦ f

)(−→v) = g
(
f
(−→v))

Composition is matrix multiplication! Lik = MijNjk

Tensor product f : V →W, g : U → Z gives f ⊗ g : V ⊗ U →W ⊗ Z:(
f ⊗ g

)(∑
ij cij
−→vi ⊗−→uj

)
=
∑

ij cijf(−→vi)⊗ g(−→uj)

Symmetry for any V,W we have σV,W : V ⊗W →W ⊗ V

σV,W
(∑

ij

cij
−→vi ⊗−→wj

)
=
∑
ij

cij
−→wj ⊗−→vi

Symmetry is transposition! Mij 7→Mji

Contraction For any V we have εV : V ∗ ⊗ V → R:

εV
(∑

ij

cij(
−→vi ⊗−→vj)

)
=
∑
ij

cij〈−→vi | −→vj 〉 =
∑
i

cii = Mii

This gives the sum of elements on the diagonal of a tensor (trace).

(Mij =)

3 6 −7
4 8 3
5 10 2

 7→ 3 + 8 + 2 = 13 (= Mii)

Expansion For any V we have ηV : R→ V ⊗ V ∗

ηV (λ) =
∑
i

λ(−→vi ⊗−→vi) = λδij

Embedding a number on the diagonal of a matrix (0 elsewhere).

λ 7→

λ 0 0
0 λ 0
0 0 λ

Brain teaser 2

Properties We can show that the following properties hold:

(1A ⊗ εA) ◦ (ηA ⊗ 1A) = 1A (εA ⊗ 1A∗) ◦ (1A∗ ⊗ ηA) = 1A∗

(εA∗ ⊗ 1A) ◦ (1A ⊗ ηA∗) = 1A (1A∗ ⊗ εA∗) ◦ (ηA∗ ⊗ 1A∗) = 1A∗

Brain teaser 2

Properties We can show that the following properties hold:

(1A ⊗ εA) ◦ (ηA ⊗ 1A) = 1A (εA ⊗ 1A∗) ◦ (1A∗ ⊗ ηA) = 1A∗

(εA∗ ⊗ 1A) ◦ (1A ⊗ ηA∗) = 1A (1A∗ ⊗ εA∗) ◦ (ηA∗ ⊗ 1A∗) = 1A∗

Commuting Diagrams

(A⊗A∗)⊗A A⊗ (A∗ ⊗A)

I ⊗A A⊗ I

A A

αA,A∗,A

1A ⊗ εη ⊗ 1A

ρAλ−1
A

1A

A∗ ⊗ (A⊗A∗) (A∗ ⊗A)⊗A∗

A∗ ⊗ I I ⊗A∗

A∗ A∗

α−1
A∗,A,A∗

ε⊗ 1A∗1A∗ ⊗ η

λAρ−1
A∗

1A∗

Compositional interpretation

(N)L

syntactic
derivations

FVect

derivational
interpretation

FVectFrob

lexical
semantics

hder hlex

I Source: type logic for syntax (N)L

I Target: sCCC of finite-dimensional vector spaces and linear maps FVect

Linearity Derivational semantics reflects the resource-sensitivity (‘linearity’) of the
source logic. Next step: word-internal semantics allowing for non-linear operations:
duplication, merger of information.

Interpretation: Types

Types as vector spaces
dnpe = dne = N

dse = S

dA •Be = dAe ⊗ dBe

dA\Be = dAe∗ ⊗ dBe

dA/Be = dAe ⊗ dBe∗

Reaching for the stars... As said above, we don’t really use dual spaces for our
calculations, but we do need them for a correct translation:

V ∗∗ ∼= V

(V ⊗W)∗ ∼= W ∗ ⊗ V ∗

Example
ds/(np\s)e = dse ⊗ dnp\se∗ = dse ⊗ (dnpe∗ ⊗ dse)∗

= S⊗ (N∗ ⊗ S)∗ = S⊗ S∗ ⊗ N

Interpretation: Proofs

Plan The proof of a sequent Γ ` A in the source logic (N)L is sent to a linear map
f : dΓe → dAe in the target sCCC FVect.

Basic rules ⌈
A ` A Ax

⌉
= 1dAe : dAe → dAe Ax

⌈
Γ ` A ∆ ` B
Γ ·∆ ` A •B •I

⌉
=

f : dΓe → dAe g : d∆e → dBe
f ⊗ g : dΓe ⊗ d∆e → dAe ⊗ dBe

⌈
∆ ` A •B Γ[A ·B] ` C

Γ[∆] ` C •E
⌉

=

f : d∆e → dAe ⊗ dBe g : Γ[dAe ⊗ dBe]→ dCe
g[f] : Γ[∆]→ dCe

Interpretation: Elimination

We’re looking to interpret the rules⌈
Γ ` A ∆ ` A\B

Γ ·∆ ` B \E
⌉ ⌈

Γ ` B/A ∆ ` A
Γ ·∆ ` B /E

⌉

\ E Given maps f : dΓe → dAe, g : d∆e → dAe∗ ⊗ dBe, we create

dΓe ⊗ d∆e
f ⊗ g
−−−−→ dAe ⊗ dAe∗ ⊗ dBe

εdAe ⊗ 1dBe−−−−−−−−−→ dBe

/ E Given maps f : dΓe → dBe ⊗ dAe∗, g : d∆e → dAe, we create

dΓe ⊗ d∆e
f ⊗ g
−−−−→ dBe ⊗ dAe∗ ⊗ dAe

1dBe ⊗ εdAe−−−−−−−−−→ dBe

Interpretation: Introduction

Now for the introduction rules⌈
A · Γ ` B
Γ ` A\B

\I
⌉ ⌈

Γ ·A ` B
Γ ` B/A

/I
⌉

\ I Given a map f : dAe ⊗ dΓe → dBe we construct

dΓe
ηdAe ⊗ 1dΓe−−−−−−−−−→ dAe∗ ⊗ dAe ⊗ dΓe

1dAe∗ ⊗ f−−−−−−−→ dAe∗ ⊗ dBe

/ I Given maps f : dΓe ⊗ dAe → dBe we construct

dΓe
1dΓe ⊗ ηdAe−−−−−−−−−→ dΓe ⊗ dAe ⊗ dAe∗

f ⊗ 1dAe∗−−−−−−−→ dBe ⊗ dAe∗

Derivational Semantics: Example

Let’s follow the rules one by one. Taking the derivation for a simple sentence:

np ` np
Ax

(np\s)/np ` (np\s)/np
Ax

np ` np
Ax

(np\s)/np · np ` np\s
/E

np︸︷︷︸
Bob

· ((np\s)/np︸ ︷︷ ︸
rejects

· np︸︷︷︸
papers

) ` s
\E

we end up with

(εN ⊗ 1S) ◦ (1N ⊗ ((1N⊗S ⊗ εN) ◦ (1N⊗S⊗N ⊗ 1N)))

which simplifies

= (εN ⊗ 1S) ◦ (1N ⊗ (1N⊗S ⊗ εN))
= (εN ⊗ 1S) ◦ (1N⊗N⊗S ⊗ εN)

= (εN ⊗ 1S ⊗ εN)

?!?!

Simplification

We can use the ‘categorical’ rules from before to simplify calculations,

e.g. 1N ⊗ 1N⊗S = 1N⊗N⊗S, and f ◦ 1N = f and so on.

Example Take the left application law:

1N : np ` np Ax 1N∗⊗S : np\s ` np\s Ax

(εN∗ ⊗ 1S) ◦ (1N ⊗ 1N∗⊗S) : np · np\s ` s
\E

But (εN∗ ⊗ 1S) ◦ (1N ⊗ 1N∗⊗S) = (εN∗ ⊗ 1S) ◦ 1N⊗N∗⊗S = εN∗ ⊗ 1S

Visual simplification

A⊗A\B ` B

dAe dAe∗ dBe

1dBe

aiMjk 7→ aiMij

ε

B ` A\(A⊗B)

dAe∗ dAe

dBe

1dBe

η

bi 7→ δjkbi

B/A⊗A ` B

dAe∗ dAedBe

1dBe

Mijak 7→Mijaj

ε

B ` (B ⊗A)/A

dAe dAe∗

dBe

1dBe

bi 7→ biδjk

η

Strategy

Our vector semantics so far can be computed by keeping track of axiom linkings:

I Step 1: derive

np0 ` np0

Ax
(np1\s2)/np3 ` (np1\s2)/np3

Ax
np4 ` np4

Ax

(np1\s2)/np3 · np4 ` {(3, 4)} : np1\s2

/E

{(0, 1), (3, 4)} : np0︸︷︷︸
Bob

· ((np1\s2)/np3︸ ︷︷ ︸
rejects

· np4︸︷︷︸
papers

) ` s2

\E

I Stap 2: translate and connect

N0 N∗1 S2

S2

N∗3 N4

I Stap 3: identify!

sj = bobirejectijkpaperk or
−→
bob⊥ × (reject ×−−−→paper)

Summary Linear Algebra: index notation

I A vector is a sequence of numbers (a1, a2, ..., an), abbreviated by ai

I A vector is a 1st-order tensor, so it has 1 index. A 2nd-order tensor is a matrix,
so: Mij . For a cube (3rd order) we have Cijk, etc.

I Juxtaposing tensors indicates taking a tensor product: aibj . Why? Because the
long-hand is

aibj =
∑
i

∑
j

aibj(
−→a i ⊗

−→
b j)

This gives a matrix as we have two free indices.

I Repeating indices means means multiply-and-sum. Examples: dot product of
two vectors, trace of a matrix, applying a cube to a matrix:

aibi =
∑
i

aibi Mii =
∑
i

Mii CijkMjk =
∑
ijk

CijkMjk
−→v i

I The Kronecker delta returns 1 for corresponding indices, and so it’s represented
by the identity matrix!

δij =

{
1 if i = j

0 otherwise

Summary Vector Interpretation: from proof to indices

We saw that three standard maps are essential for our vector calculations:

Name Identity Contraction Expansion

Derivation . . . A . . . ` . . . A A . . . A . . . ` ` . . . A . . . A . . .

Visual

A

A

1A

A A

εA A A

ηA

Relabelling ai 7→ ai Mij/aibj 7→Mii/aibi 1 7→ δij

Summary: The Compositional Process

SYNTAX

LEXICAL
SEMANTICS

DERIVATIONAL
SEMANTICS

PHRASE
SEMANTICS

EVALUATION

Type
Respect

Structure
Respect

Type
induction

Parsing

Lexical
Content

Composition

I Our core methodology provides syntax and the interfacing with semantics,

I Lexical content is learnable, though not always in a tractable way (Tue)

I Syntax doesn’t come for free: type induction & parsing as learnable processes
(Wed/Thu)

I In the end, the phrase semantics can be applied to NLP tasks (Fri)

References

Sheldon Jay Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics.
Springer, 3 edition, 2015.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical foundations for
a compositional distributional model of meaning. CoRR, abs/1003.4394, 2010. URL
http://arxiv.org/abs/1003.4394.

Bob Coecke, Edward Grefenstette, and Mehrnoosh Sadrzadeh. Lambek vs. Lambek:
Functorial vector space semantics and string diagrams for lambek calculus. Ann.
Pure Appl. Log., 164(11):1079–1100, 2013. doi: 10.1016/j.apal.2013.05.009. URL
https://doi.org/10.1016/j.apal.2013.05.009.

Joachim Lambek. The mathematics of sentence structure. The American Mathematical
Monthly, 65(3):154–170, 1958.

Joachim Lambek. On the calculus of syntactic types. Structure of language and its
mathematical aspects, 12:166–178, 1961.

Joachim Lambek. Categorial and categorical grammars. In Categorial grammars and
natural language structures, pages 297–317. Springer, 1988.

Joachim Lambek and Philip J. Scott. Introduction to Higher Order Categorical Logic.
Cambridge University Press, 1986.

http://arxiv.org/abs/1003.4394
https://doi.org/10.1016/j.apal.2013.05.009

Richard Montague. Universal grammar. In Richmond H. Thomason, editor, Formal
Philosophy: Selected Papers of Richard Montague, number 222–247. Yale University
Press, New Haven, London, 1974.

Richard Moot and Christian Retoré. The Logic of Categorial Grammars - A Deductive
Account of Natural Language Syntax and Semantics, volume 6850 of Lecture Notes
in Computer Science. Springer, 2012. ISBN 978-3-642-31554-1. doi: 10.1007/
978-3-642-31555-8. URL https://doi.org/10.1007/978-3-642-31555-8.

Gijs Wijnholds. Categorical foundations for extended compositional distributional mod-
els of meaning. MSc Thesis. Institute for Logic, Language and Information, University
of Amsterdam., 2015. URL https://eprints.illc.uva.nl/id/eprint/940/.

https://doi.org/10.1007/978-3-642-31555-8
https://eprints.illc.uva.nl/id/eprint/940/

