
Compositional Models of Vector-based Semantics:

From Theory to Tractable Implementation

Day 2: The Curse of Dimensionality

Gijs Wijnholds & Michael Moortgat

ESSLLI 2022

Abstract

Vector-based compositional architectures combine a distributional view of word
meanings with a modelling of the syntax-semantics interface as a structure-preserving
map relating syntactic categories (types) and derivations to their counterparts in a
corresponding meaning algebra.

This design is theoretically attractive, but faces challenges when it comes to
large-scale practical applications. First there is the curse of dimensionality resulting
from the fact that semantic spaces directly reflect the complexity of the types of the
syntactic front end. Secondly, modelling of the meaning algebra in terms of finite
dimensional vector spaces and linear maps means that vital information encoded in
syntactic derivations is lost in translation.

The course compares and evaluates methods that are being proposed to face
these challenges. Participants gain a thorough understanding of theoretical and
practical issues involved, and acquire hands-on experience with a set of user-friendly
tools and resources.

Today: the curse of dimensionality

Day plan

I The curse of dimensionality in tensor-based compositional models: naive models
require large tensor representations

I Lexical semantics for great expressivity: toning down the size of function word
tensors

I The curse of dimensionality in representation learning: skipgram matrices, de-
pendencies as matrices, tensor decompositions

I Where do we go from here?

Recap: The Compositional Process

SYNTAX

LEXICAL
SEMANTICS

DERIVATIONAL
SEMANTICS

PHRASE
SEMANTICS

EVALUATION

Type
Respect

Structure
Respect

Type
induction

Parsing

Lexical
Content

Composition

I Our core methodology provides syntax and the interfacing with semantics,

I Lexical content is learnable, though not always in a tractable way (Tue)

I Syntax doesn’t come for free: type induction & parsing as learnable processes
(Wed/Thu)

I In the end, the phrase semantics can be applied to NLP tasks (Fri)

Today: The Compositional Process

SYNTAX

LEXICAL
SEMANTICS

DERIVATIONAL
SEMANTICS

PHRASE
SEMANTICS

EVALUATION

Type
Respect

Structure
Respect

Type
induction

Parsing

Lexical
Content

Composition

I We discuss the consequences of the basic methodology for lexical semantics,

I Lexical content is learnable, though not always in a tractable way,

I We look at ways to mitigate the curse of dimensionality,

I Composition may be left open, i.e. we are not bound to a linear map interpreta-
tion of semantic composition.

Diagrams Galore
2.1. Categorical Composition 57

(s\s)/s

/

np np\s
Bill sings and

\

\

s

\

Hannah dances
np\snp

FIGURE 2.5: Information flow for the derivation in Figure 2.4.

A A\B

\

B

A A B

B

B

/

A AAA\B

B

B

FIGURE 2.6: Translation of the Lambek diagrams for left/right appli-
cation to string diagrams of a compact closed category.

Diagrams for sCCCs + Frob

Diagrammatic reasoning The contraction/expansion operations on finite-dimensional
vector spaces can be depicted visually:

ε : V ⊗ V → I η : I → V ⊗ V

V V

V V

with the according ‘yanking’ equations fulfilling the sCCC closure property:

V

V

=

V

V

=

V

V

Syntax Diagrams

[Wijnholds, 2017] considers categorical proof nets: graphical representations of the
deductions in the Lambek Calculus that also satisfy the categorical axioms of a biclosed
monoidal category. In short, one extends the language of string diagrams with links
for each connective in the calculus (top: destructor links, bottom: constructor links):

•
A •B

A B

\
A\B

A B

/

B/A

B A

•
A B

A •B
\

A B

A\B
/

B A

B/A

Diagram Equations

Cut! Attaching a destructor link to a constructor link in either order gives a structure
that may be cut out of a diagram:

•

•

A B =

A •B

A •B

A •B

•

•

=

A B

A •B

A B

A B

\

\

A B =

A\B

A\B

A\B

\

A\B

\

=

A B

A B

A B

Residuation and application

Combinators The application law A⊗ A\B → B can be expressed with the combi-
nator /−11A\B. Visually:

Residuation /−1 Application

•

f

\

A •B

A B

A\C

A C

•

\

A • (A\B)

A A\B

A
B

Brain Teaser Prove the below equations visually:

I Bifunctoriality of •: (k • h) ◦ (g • f) = (k ◦ g) • (h ◦ f),
for g : A→ C, f : B → D, k : C → E, h : D → F

I Naturality of residuation: h ◦ /−1k ◦ (f ⊗ g) = /−1((f\h) ◦ k ◦ g),
for f : A→ A′, g : B → B′, h : C → C ′, k : B′ → A′\C

From syntax to semantics

Interpreting categories The elimination steps in a natural deduction proof that we
often use directly translate to sCCC diagrams:

A A\B

\

B

A A B

B

B

/

A AAA\B

B

B

Lexical recipes

·

Completing the interpretation

Compositional interpretion as a two-step translation hder , hlex :

(N)L

syntactic
derivations

FVect

derivational
interpretation

FVectFrob

lexical
semantics

hder hlex

I NL ' directional linear λ terms

source language: syntactic calculus

I FVect = finite-dimensional vector spaces and linear maps

skeleton for meaning assembly, parametric w.r.t. word meaning

I FVectFrob: we expand FVect with Frobenius algebras, which allow us to ‘dupli-
cate’ information.

Frobenius!

Definition A Frobenius algebra (X,∆, ι, µ, ζ) is an object (read: vector space) X
with four maps

(coass.) ∆: X → X ⊗X ι : X → I

(ass.) µ : X ⊗X → X ζ : I → X

where ∆ and µ must comply with the Frobenius condition:

(µ⊗ 1X) ◦ (1X ⊗∆) = ∆ ◦ µ = (1X ⊗ µ) ◦ (∆⊗ 1X)

I’ve seen this before... We recognise ∆ as a duplicator for information and µ as a
merger of information. The Frobenius condition visually:

X ⊗X X X ⊗X

X ⊗ (X ⊗X) (X ⊗X)⊗X

µX ∆X

α−1

1X ⊗∆X µX ⊗ 1X

Frobenius Concretely 1

Duplication For any V we have ∆V : V → V ⊗ V :

∆V

(∑
i

ci~vi
)

=
∑
i

ci(~vi⊗~vi) = ρijkvk ρijk =

{
1 if i = j = k

0 otherwise

Embedding a vector on the diagonal of a matrix:3
4
5

 7→
3 0 0

0 4 0
0 0 5

Deletion For any V we have ιV : V → R, given by

ιV
(∑

i

ci~vi
)

=
∑
i

ci = τivi τi =

{
1 if i = i

0 otherwise

Summing the elements of a vector:3
4
5

 7→ 3 + 4 + 5 = 12

Frobenius Concretely 2

Merging For any V we have µV : V ⊗ V → V :

µV
(∑

ij

cij(~vi⊗~vj)
)

=
∑
i

cii~vi = ρijkMij ρijk =

{
1 if i = j = k

0 otherwise

Retrieve the diagonal of a matrix: 6 1 5
3 −9 −4
−2 10 7

 7→
 6
−9
7

Insertion For any V we have ζV : R→ V , given by:

ζV
(
λ
)

=
∑
i

λ~vi = λτi τi =

{
1 if i = i

0 otherwise

Embedding a number in a vector:

λ 7→

λλ
λ

Brain Teaser Time

Frobenius condition

(µV ⊗ 1V) ◦ (1V ⊗∆V) = ∆V ◦ µV = (1V ⊗ µ) ◦ (∆⊗ 1V)

Speciality
µV ◦∆V = 1V

(Try it out : vi 7→ ρjkivi 7→ ρjklρjkivi)

Decomposition
εV = ιV ◦ µV ηV = ∆V ◦ ζV

(Because: τkρijkMij = Mii) (Because: ρijkτk = δij)

Tensor Product
∆V⊗W = ∆V ⊗∆W

µV⊗W = (µV ⊗ µW) ◦ (1V ⊗ σW,V ⊗ 1W)

Diagrams and visual equations for Frobenius Algebras

∆ : A→ A⊗A ι : A→ I µ : A⊗A→ A ζ : I → A

A A

A

A

A A

A A

Frobenius Condition

A A

AA A

A A

AA

A A

A

= =

Coördinators

Recap For chameleon words (‘and’, ‘or’, ‘not’) we may use polymorphic types, mak-
ing them combine with different elements: (X\X)/X for the binary case, X/X for
negation. In formal semantics the binary case is sometimes referred to as generalised
coordination with semantic types A1 → ...→ An → t.

Issue what if we want to coordinate entities, as in ‘Bob and Alice’? We’d get
e→ e→ e and :

Bob ∧Alice = ???

Frobenius! Using µ we can even compute ‘intersection’ at the vector level:

Bob ∧Alice =
−→
bob �−−→alice

Intüıtion All those features that hold for both Bob and Alice (...)

General We can coordinate any type: given
−→
A,
−→
B in vector space V , the coordination

becomes −→
A uFrob

−→
B = µV (

−→
A ⊗−→B) = ρIJKAIBJ

Pronoun Relativisation

Subj relative ‘paper that disappointed Bob’ (n\n)/(np\s)

Obj relative ‘paper that Bob rejected’ (n\n)/(s/np)

Intuition In both cases we’d like to express an intersective meaning (here: obj. rela-
tive):

−−−→paper � ιS(rejected×−→bob)

Syn. type Vector space

(subj) that (n\n)/(np\s) N∗ ⊗ N⊗ S∗ ⊗ N

(obj) that (n\n)/(s/np) N∗ ⊗ N⊗ N⊗ S∗

Compare with the formal semantics version:

λx!.((paper x) ∧ ((rejected x) Bob)) : ! e(t

In Dutch ‘ring die Frodo vernietigt’; one type, two readings Day 3

Example: Object Relative

Natural Deduction

paper
n0

that

(n1\n2)/(s3/np4)

Bob
np5

rejected

(np6\s7)/np8 [npa ` npa]1

rejected · np8 ` np6\s7
[/E]

Bob · (rejected · np8) ` s7
[\E]

(Bob · rejected) · np8 ` s7
[Ar]

Bob · rejected ` s7/np8
[/I]1

that · (Bob · rejected) ` n1\n2
[/E]

paper · (that · (Bob · rejected)) ` n2
[\E]

Diagrammatic

(np6\s7)/np8np5n0 (n1\n2)/(s3/np4)

/

paper that Bob rejected

\

/

n

/

\

Example: Object Relative

Syntactic Diagram

(np6\s7)/np8np5n0 (n1\n2)/(s3/np4)

/

paper that Bob rejected

\

/

n

/

\

Semantic Diagram

N0 N∗
1 N2 N4 S∗

3

N2

N5 N∗
6 S7 N∗

8

Example: Object Relative

Semantic Diagram with lexical items:

N0

paperi

N∗
1 N2

thatjklm

N4 S∗
3

N2

N5

bobn

N∗
6 S7

rejectedopq

N∗
8

Semantic Diagram after lexical insertion:

N0

paperi

N∗
1 N2 N4

◦

S∗
3

◦

N2

N5

bobm

N∗
6 S7

rejectedmlk

N∗
8

nj = paperi ⊗ ρijkτl ⊗ bobm ⊗ rejectedmlk

Example: Object Relative

Semantic Diagram after lexical insertion:

N0

paperi

N∗
1 N2 N4

◦

S∗
3

◦

N2

N5

bobm

N∗
6 S7

rejectedmlk

N∗
8

nj = paperi ⊗ ρijkτl ⊗ bobm ⊗ rejectedmlk

Semantic Diagram after rewriting:

N0

paperi

N2

◦
◦

N5

bobm

N∗
6 S7

rejectedmlk

N∗
8

nj = paperi � (bobmτlrejectedmlk)

Mind the gaps...

Parasitic gaps a gap that is felicitous only in the presence of a primary gap. Compare the below:

a papers that Bob rejected (immediately)
b papers that Bob rejected without reading p (carefully)

Polymorphism we type the coordinator ‘without’ in a structured way. We instantiate the polymorphic
type (X\X)/Y with X = np\s, Y = gp. We obtain the desired copying behaviour of the gap via a derived
type, in two steps:

(X\X)/Y
expand−−−−−−→ ((X\X)/np)/(Y/np)

distribute−−−−−−−→ ((X/np)\(X/np))/(Y/np)

Natural deduction

paper
n

that

(n\n)/(s/np)

Bob
np

rejected

(np\s)/np

without

(((np\s)/np)\((np\s)/np))/(gp/np)

reading

gp/np

without · reading ` ((np\s)/np)\((np\s)/np)
[/E]

rejected · (without · reading) ` (np\s)/np
[\E]

[np ` np]1

(rejected · (without · reading)) · np ` np\s
[/E]

Bob · ((rejected · (without · reading)) · np) ` s
[\E]

(Bob · (rejected · (without · reading))) · np ` s
[Ar]

Bob · (rejected · (without · reading)) ` s/np
[/I]1

that · (Bob · (rejected · (without · reading))) ` n\n
[/E]

paper · (that · (Bob · (rejected · (without · reading)))) ` n
[\E]

Mind the gaps...

Diagrammatic parasitic the use of hypothetical reasoning disappears in the visual format, associa-
tivity becomes apparent from the inbalance between tensor (white) and par (grey) nodes.

(np\s)/npnpn (n\n)/(s/np)

/

paper that bob rejected

\

n

without

(((np\s)/np)\((np\s)/np))/(gp/np) gp/np

reading

/

\

/

\

/

Mind the gaps...

Paper

N SN∗

rejected

N∗ N∗

reading

N∗ S

Bob

N N NS∗ N∗ S N∗NN∗ N S∗

that

NS∗N

without

N

N S N NN

Bob Rejected Paper Not-Reading

S N

N

N

Discussion

I We have seen how variable reuse in lambda terms to model function words, can
be analogously modelled in vector-based semantics, using Frobenius Algebras.

I In the vector-based setting, the use of Frobenius Algebras is non-linear (in the
variable duplication sense) but linear in the Linear Algebra sense: linear non-
linearity!

I A question: how far can the use of Frobenius Algebras for function words take
us in reducing the size of tensor representations that we need to learn?

I And what about content words? How do we represent the content of adjectives,
verbs, etc? Are current ML techniques adequate for representing these as tensors?

Representation Learning in higher dimensions

The Shape of the Lexicon

I Given our theoretical setup, we require that lexical items adhere to the interpre-
tation of the syntactic type they were assigned.

I A word with syntactic type np, will be interpreted in the noun space N; a
word with a complex syntactic type, viz. an intransitive verb, is interpreted
as dnp\se = N⊗ S.

I The consequence is that we need to figure out how to represent words with
complex types as higher-order tensors

I Nouns are vectors, but adjectives, verbs, coordinators, etc?

I The process of inducing the appropriate tensors for given words is called repre-
sentation learning.

Nouns are Vectors, Adjectives are Matrices

Following the compositional distributional methodology, Baroni and Zamparelli [2010]
investigates a way of learning adjective matrices using linear regression:

1. Take co-occurrence based vectors −→n for nouns (normalized using mutual infor-
mation),

2. Compute adjective-noun vectors
−→
An by considering the combo as a single word,

3. Given adjective A, we optimise over the nouns n that occurred with it, using
linear regression, viz.

∀−→An : A · −→n +
−→
b ∼= −→An

Skipgram for nouns (1/2)

Goal Learn vectors for words such that two vectors have high similarity for co-
occurring words, low similarity otherwise:

cos(v1, v2) =
v1 · v2

|v1||v2|
Network

Target
index

0

0

...

1

...

0

...

0

h1

h2

...

hi

...

hn

0.12

0.74

...

0.53

...

0.85

...

0.42

Target Hidden Context

Wt

Target layer

Wc

Context
layer

Dot product
with all contexts

Target
vector

Problem Need to compute dot product between all words in the vocabulary!

Skipgram for nouns (2/2)

Negative Sampling Instead of comparing against all contexts, we randomly sample
contexts that are unlikely to appear for a given target word [Mikolov et al., 2013].

APPLE

PICK

ONE

RIPE

FROM

THE

TREE

CICERO

SEXTANT

DEFER

Figure 1: Learning the vector for apple in the con-
text pick one ripe apple from the tree. The vector
for apple is updated in order to increase the inner
product with green vectors and decrease it with red
ones, which are negatively sampled.

adjective-noun similarity dataset from Mitchell
and Lapata (2010). Finally, the tensor-based skip-
gram model also leads to improved performance in
the detection of semantically anomalous adjective-
noun phrases, compared to previous work.

2 A tensor-based skip-gram model

Our model treats adjectives as linear maps over the
vector space of noun meanings, encoded as matri-
ces. The algorithm works in two stages: the first
stage learns the noun vectors, as in a standard skip-
gram model, and the second stage learns the adjec-
tive matrices, given fixed noun vectors.

2.1 Training of nouns

To learn noun vectors, we use a skip-gram model
with negative sampling (Mikolov et al., 2013).
Each noun n in the vocabulary is assigned two d-
dimensional vectors: a content vector n, which
constitutes the embedding, and a context vector
n1. For every occurrence of a noun n in the corpus,
the embeddings are updated in order to maximise
the objective function

ÿ

c1PC
log �pn ¨ c1q `

ÿ

c1PC
log �p´n ¨ c1q, (1)

where C is a set of contexts for the current noun,
and C is a set of negative contexts. The contexts
are taken to be the vectors of words in a fixed win-
dow around the noun, while the negative contexts
are vectors for k words sampled from a unigram
distribution raised to the power of 3{4 (Goldberg,
2014). In our experiments, we have set k “ 5.

UNRIPE APPLE

THE

GREEN

SMALL

TASTED

VERY

SOUR

APPLEUNRIPE X =

SAYS

BRAILLE

OMEN

=

Figure 2: Learning the matrix for unripe in the
context the green small unripe apple tasted very
sour. The matrix for unripe is updated to increase
the inner product of the vector for unripe apple
with green vectors and decrease it with red ones.

After each step, both content and context vec-
tors are updated via back-propagation. This pro-
cedure leads to noun embeddings (content vectors)
which have a high inner product with the vectors
of words in the context of the noun, and a low
inner product with vectors of negatively sampled
words. Fig. 1 shows this intuition.

2.2 Training of adjectives
Each adjective a in the vocabulary is assigned a
matrix A, initialised to the identity plus uniform
noise. First, all adjective-noun phrases pa, nq are
extracted from the corpus. For each pa, nq pair, the
corresponding adjective matrix A and noun vec-
tor n are multiplied to compute the adjective-noun
vector An. The matrix A is then updated to max-
imise the objective function

ÿ

c1PC
log �pAn ¨ c1q `

ÿ

c1PC
log �p´An ¨ c1q. (2)

The contexts C are taken to be the vectors of words
in a window around the adjective-noun phrase,
while the negative contexts C are again vectors of
randomly sampled words. Matrices are initialised
to the identity, while the context vectors C are the
results of Section 2.1.

Finally, the matrix A is updated via back-
propagation. Equation 2 means that the induced
matrices will have the following property: when
multiplying the matrix with a noun vector, the re-
sulting adjective-noun vector will have a high in-
ner product with words in the context window of
the adjective-noun phrase, and low inner product
for negatively sampled words. This is exemplified
in Figure 2.

328

Positive
samples

Negative
samples

0

0

...

1

...

0

...

0

h1

h2

...

hi

...

hn

0.12

0.74

...

0.53

...

0.85

...

0.42

Target Hidden Context

Wt

Target layer

Wc

Context
layer

Formula ∑
c∈C

log σ(n · c) +
∑
c∈C

log σ(−n · c)

Skipgram for adjectives

Context we swap the noun context for only the contexts for adjective-noun combi-
nations, to learn a single matrix per adjective [Maillard and Clark, 2015]:

APPLE

PICK

ONE

RIPE

FROM

THE

TREE

CICERO

SEXTANT

DEFER

Figure 1: Learning the vector for apple in the con-
text pick one ripe apple from the tree. The vector
for apple is updated in order to increase the inner
product with green vectors and decrease it with red
ones, which are negatively sampled.

adjective-noun similarity dataset from Mitchell
and Lapata (2010). Finally, the tensor-based skip-
gram model also leads to improved performance in
the detection of semantically anomalous adjective-
noun phrases, compared to previous work.

2 A tensor-based skip-gram model

Our model treats adjectives as linear maps over the
vector space of noun meanings, encoded as matri-
ces. The algorithm works in two stages: the first
stage learns the noun vectors, as in a standard skip-
gram model, and the second stage learns the adjec-
tive matrices, given fixed noun vectors.

2.1 Training of nouns

To learn noun vectors, we use a skip-gram model
with negative sampling (Mikolov et al., 2013).
Each noun n in the vocabulary is assigned two d-
dimensional vectors: a content vector n, which
constitutes the embedding, and a context vector
n1. For every occurrence of a noun n in the corpus,
the embeddings are updated in order to maximise
the objective function

ÿ

c1PC
log �pn ¨ c1q `

ÿ

c1PC
log �p´n ¨ c1q, (1)

where C is a set of contexts for the current noun,
and C is a set of negative contexts. The contexts
are taken to be the vectors of words in a fixed win-
dow around the noun, while the negative contexts
are vectors for k words sampled from a unigram
distribution raised to the power of 3{4 (Goldberg,
2014). In our experiments, we have set k “ 5.

UNRIPE APPLE

THE

GREEN

SMALL

TASTED

VERY

SOUR

APPLEUNRIPE X =

SAYS

BRAILLE

OMEN

=

Figure 2: Learning the matrix for unripe in the
context the green small unripe apple tasted very
sour. The matrix for unripe is updated to increase
the inner product of the vector for unripe apple
with green vectors and decrease it with red ones.

After each step, both content and context vec-
tors are updated via back-propagation. This pro-
cedure leads to noun embeddings (content vectors)
which have a high inner product with the vectors
of words in the context of the noun, and a low
inner product with vectors of negatively sampled
words. Fig. 1 shows this intuition.

2.2 Training of adjectives
Each adjective a in the vocabulary is assigned a
matrix A, initialised to the identity plus uniform
noise. First, all adjective-noun phrases pa, nq are
extracted from the corpus. For each pa, nq pair, the
corresponding adjective matrix A and noun vec-
tor n are multiplied to compute the adjective-noun
vector An. The matrix A is then updated to max-
imise the objective function

ÿ

c1PC
log �pAn ¨ c1q `

ÿ

c1PC
log �p´An ¨ c1q. (2)

The contexts C are taken to be the vectors of words
in a window around the adjective-noun phrase,
while the negative contexts C are again vectors of
randomly sampled words. Matrices are initialised
to the identity, while the context vectors C are the
results of Section 2.1.

Finally, the matrix A is updated via back-
propagation. Equation 2 means that the induced
matrices will have the following property: when
multiplying the matrix with a noun vector, the re-
sulting adjective-noun vector will have a high in-
ner product with words in the context window of
the adjective-noun phrase, and low inner product
for negatively sampled words. This is exemplified
in Figure 2.

328

Positive
samples

Negative
samples

0

0

...

1

...

0

...

0

h1

h2

...

hi

...

hn

0.12

0.74

...

0.53

...

0.85

...

0.42

Target Hidden Context

Wt

Target layer

Wc

Context
layer

Formula ∑
c∈C

log σ(An · c) +
∑
c∈C

log σ(−An · c)

Skipgram Tensors: in text

Intüıtion Let’s try to generalize skipgram to arbitrary tensors. The syntactic type
of a word determines the order of the tensor to be learnt; contexts are now tuples of
words.

Example A transitive verb v with syntactic type (np\s)/np, in vector space N⊗S⊗N.

ducks drink warm water

su mod

obj

We obtain a word-context triple: {(drink, duck,water)}
Puzzle.. We have to learn a cube, that combines with subject and object to get a
sentence. But what is the context of a sentence?

Decomposition We decompose the cube into a pair of matrices: one transforms the
subject to approximate the object, the other matrix vice versa [Wijnholds et al., 2020]:

drinks ×−−→duck ∼= −−−→water drinko ×−−−→water ∼= −−→duck

Skipgram Tensors: in formulas

For a word W with dependencies d1, d2, ..., dn, we can define n different models by
choosing how many dependents to use as context. This gives a trade off between
tensor order and number of distinct tensors to learn:

Full tensor model∑
c∈C

log σ(Wd1...dn · c) +
∑
c∈C

log σ(−Wd1...dn · c)

N-1 model∑
di∈D

log σ(Wd1...di−1di+1...dn · di) +
∑
di∈D

log σ(−Wd1...di−1di+1...dn · di)

N-i model∑
d1...di∈D

log σ(Wdi+1...dn·P+{d1, ...,di})+
∑

d1...di∈D

log σ(Wdi+1...dn·P+{d1, ...,di})

Skipgram Tensors for verbs: N-1, subj model

Context objects that go with the verb subject combination under consideration:

VERB SKIPGRAM (N-1, S)

IDEA

FORMULA

∑
o∈O

log σ(Vs ⋅ o) + ∑
o∈O

log σ(−Vs ⋅ o)

APPLE

PICK

ONE

RIPE

FROM

THE

TREE

CICERO

SEXTANT

DEFER

Figure 1: Learning the vector for apple in the con-
text pick one ripe apple from the tree. The vector
for apple is updated in order to increase the inner
product with green vectors and decrease it with red
ones, which are negatively sampled.

adjective-noun similarity dataset from Mitchell
and Lapata (2010). Finally, the tensor-based skip-
gram model also leads to improved performance in
the detection of semantically anomalous adjective-
noun phrases, compared to previous work.

2 A tensor-based skip-gram model

Our model treats adjectives as linear maps over the
vector space of noun meanings, encoded as matri-
ces. The algorithm works in two stages: the first
stage learns the noun vectors, as in a standard skip-
gram model, and the second stage learns the adjec-
tive matrices, given fixed noun vectors.

2.1 Training of nouns

To learn noun vectors, we use a skip-gram model
with negative sampling (Mikolov et al., 2013).
Each noun n in the vocabulary is assigned two d-
dimensional vectors: a content vector n, which
constitutes the embedding, and a context vector
n1. For every occurrence of a noun n in the corpus,
the embeddings are updated in order to maximise
the objective function

ÿ

c1PC
log �pn ¨ c1q `

ÿ

c1PC
log �p´n ¨ c1q, (1)

where C is a set of contexts for the current noun,
and C is a set of negative contexts. The contexts
are taken to be the vectors of words in a fixed win-
dow around the noun, while the negative contexts
are vectors for k words sampled from a unigram
distribution raised to the power of 3{4 (Goldberg,
2014). In our experiments, we have set k “ 5.

UNRIPE APPLE

THE

GREEN

SMALL

TASTED

VERY

SOUR

APPLEUNRIPE X =

SAYS

BRAILLE

OMEN

=

Figure 2: Learning the matrix for unripe in the
context the green small unripe apple tasted very
sour. The matrix for unripe is updated to increase
the inner product of the vector for unripe apple
with green vectors and decrease it with red ones.

After each step, both content and context vec-
tors are updated via back-propagation. This pro-
cedure leads to noun embeddings (content vectors)
which have a high inner product with the vectors
of words in the context of the noun, and a low
inner product with vectors of negatively sampled
words. Fig. 1 shows this intuition.

2.2 Training of adjectives
Each adjective a in the vocabulary is assigned a
matrix A, initialised to the identity plus uniform
noise. First, all adjective-noun phrases pa, nq are
extracted from the corpus. For each pa, nq pair, the
corresponding adjective matrix A and noun vec-
tor n are multiplied to compute the adjective-noun
vector An. The matrix A is then updated to max-
imise the objective function

ÿ

c1PC
log �pAn ¨ c1q `

ÿ

c1PC
log �p´An ¨ c1q. (2)

The contexts C are taken to be the vectors of words
in a window around the adjective-noun phrase,
while the negative contexts C are again vectors of
randomly sampled words. Matrices are initialised
to the identity, while the context vectors C are the
results of Section 2.1.

Finally, the matrix A is updated via back-
propagation. Equation 2 means that the induced
matrices will have the following property: when
multiplying the matrix with a noun vector, the re-
sulting adjective-noun vector will have a high in-
ner product with words in the context window of
the adjective-noun phrase, and low inner product
for negatively sampled words. This is exemplified
in Figure 2.

328

Positive
objects

Negative
objects

EAT

STUDENT EAT

APPLE

STUDENT

BANANA

PIZZA

GOBI MATAR

PASTA

TOFURKEY

CAR

HAND

STONE

Positive
samples

Negative
samples

0

0

...

1

...

0

...

0

h1

h2

...

hi

...

hn

0.12

0.74

...

0.53

...

0.85

...

0.42

Target Hidden Context

Wt

Target layer

Wc

Context
layer

Formula ∑
o∈O

log σ(Vs · o) +
∑
o∈O

log σ(−Vs · o)

Tensor Factorization

Decomposition [Van de Cruys et al., 2013] proposes to use NMF and a variation on
Tucker decomposition to approximate noun and verb representations:

1. Use non-negative matrix factorization (NMF) to retrieve dense noun vectors:

The idea of modeling compositionality by means
of tensor (Kronecker) product has been proposed
in the literature before (Clark and Pulman, 2007;
Coecke et al., 2010). However, the method presented
here is the first that tries to capture compositional
phenomena by exploiting the multi-way interactions
between latent factors, induced by a suitable tensor
factorization model.

3 Methodology

3.1 Mathematical preliminaries

The methodology presented in this paper requires
a number of concepts and mathematical operations
from tensor algebra, which are briefly reviewed in
this section. The interested reader is referred to Kolda
and Bader (2009) for a more thorough introduction
to tensor algebra (including an overview of various
factorization methods).

A tensor is a multidimensional array; it is the gen-
eralization of a matrix to more than two dimensions,
or modes. Whereas matrices are only able to cap-
ture two-way co-occurrences, tensors are able to cap-
ture multi-way co-occurrences.1 Following prevail-
ing convention, tensors are represented by boldface
Euler script notation (X), matrices by boldface capi-
tal letters (X), vectors by boldface lower case letters
(x), and scalars by italic letters (x).

The n-mode product of a tensor X ∈ RI1×I2×...×IN

with a matrix U ∈ RJ×In is denoted by X×n U, and
is defined elementwise as

(X×n U)i1...in−1 jin+1...iN =
In

∑
in=1

xi1i2...iN u jin (1)

The Kronecker product of matrices A ∈ RI×J and
B∈RK×L is denoted by A⊗B. The result is a matrix
of size (IK)× (JL), and is defined by

A⊗B =

a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B . . . aIJB

 (2)

1In this research, we limit ourselves to three-way co-
occurrences of verbs, subject, and objects, modelled using a
three-mode tensor.

A special case of the Kronecker product is the
outer product of two vectors a ∈ RI and b ∈ RJ , de-
noted a◦b. The result is a matrix A ∈ RI×J obtained
by multiplying each element of a with each element
of b.

Finally, the Hadamard product, denoted A ∗B,
is the elementwise multiplication of two matrices
A ∈ RI×J and B ∈ RI×J , which produces a matrix
that is equally of size I× J.

3.2 The construction of latent noun factors

The first step of our method consists in the construc-
tion of a latent factor model for nouns, based on their
context words. For this purpose, we make use of non-
negative matrix factorization (Lee and Seung, 2000).
Non-negative matrix factorization (NMF) minimizes
an objective function – in our case the Kullback-
Leibler (KL) divergence – between an original matrix
VI×J and WI×KHK×J (the matrix multiplication of
matrices W and H) subject to the constraint that all
values in the three matrices be non-negative. Param-
eter K is set ' I,J so that a reduction is obtained
over the original data. The factorization model is
represented graphically in figure 1.

= xV W
H

k

k

no
un

s

context words

no
un

s

context words

Figure 1: Graphical representation of NMF

NMF can be computed fairly straightforwardly,
alternating between the two iterative update rules
represented in equations 3 and 4. The update rules
are guaranteed to converge to a local minimum in the
KL divergence.

Haµ ←Haµ
∑i Wia

Viµ
(WH)iµ

∑k Wka
(3)

Wia←Wia
∑µ Haµ

Viµ
(WH)iµ

∑v Hav
(4)

3.3 Modeling multi-way interactions

In our second step, we construct a multi-way interac-
tion model for subject verb object (svo) triples, based

2. Collect (s, v, o) co-occurrence counts and factorize into a smaller tensor, against
the noun vector representations:

subjects

ve
rb
s

ob
jec
ts

=

ob
jec
ts

k

k
ve

rb
s

subjectsk
k

Figure 3: A graphical representation of our model instan-
tiation without the latent verb mode

compute the outer product of both vectors, resulting
in a matrix Y of size K×K.

Y = ws ◦wo (8)

Our second and final step is then to weight the
original verb matrix Gv of latent interactions (the
appropriate verb slice of tensor G) with matrix Y,
containing the latent interactions of the specific sub-
ject and object. This is carried out by taking the
Hadamard product of Gv and Y.

Z = Gv ∗Y (9)

4 Example

In this section, we present a number of example com-
putations that clarify how our model is able to capture
compositionality. All examples come from actual cor-
pus data, and are computed in a fully automatic and
unsupervised way.

Consider the following two sentences:

(1) The athlete runs a race.

(2) The user runs a command.

Both sentences contain the verb run, but they rep-
resent clearly different actions. When we compute
the composition of both instances of run with their
respective subject and object, we want our model to
show this difference.

To compute the compositional representation of
sentences (1) and (2), we proceed as follows. First,
we extract the latent vectors for subject and object
(wathlete and wrace for the first sentence, wuser and
wcommand for the second sentence) from matrix W.

Next, we compute the outer product of subject and
object – wathlete ◦wrace and wuser ◦wcommand – which
yields matrices Y〈athlete,race〉 and Y〈user,command〉. By
virtue of the outer product, the matrices Y – of size
K×K – represent the level of interaction between the
latent factors of the subject and the latent factors of
the object. We can inspect these interactions by look-
ing up the factor pairs (i.e. matrix cells) with the high-
est values in the matrices Y. Table 1 presents the fac-
tor pairs with highest value for matrix Y〈athlete,race〉;
table 2 represents the factor pairs with highest value
for matrix Y〈user,command〉. In order to render the fac-
tors interpretable, we include the three most salient
words for the various factors (i.e. the words with the
highest value for a particular factor).

The examples in tables 1 and 2 give an impression
of the effect of the outer product: semantic features
of the subject combine with semantic features of the
object, indicating the extent to which these features
interact within the expression. In table 1, we notice
that animacy features (28, 195) and a sport feature
(25) combine with a ‘sport event’ feature (119). In
table 2, we see that similar animacy features (40,
195) and technological features (7, 45) combine with
another technological feature (89).

Similarly, we can inspect the latent interactions of
the verb run, which are represented in the tensor slice
Grun. Note that this matrix contains the verb seman-
tics computed over the complete corpus. The most
salient factor interactions for Grun are represented in
table 3.

Table 3 illustrates that different senses of the verb
run are represented within the matrix Grun. The first
two factor pairs hint at the ‘organize’ sense of the
verb (run a seminar). The third factor pair repre-
sents the ‘transport’ sense of the verb (the bus runs
every hour).4 And the fourth factor pair represents
the ‘execute’ or ‘deploy’ sense of run (run Linux,
run a computer program). Note that we only show
the factor pairs with the highest value; matrix G con-
tains a value for each pairwise combination of the
latent factors, effectively representing a rich latent
semantics for the verb in question.

The last step is to take the Hadamard product of
matrices Y with verb matrix G, which yields our final

4Obviously, hour is not an object of the verb, but due to
parsing errors it is thus represented.

Words are Vectors, Dependencies are Matrices

Dependencies as matrices As a scalable alternative, [Czarnowska et al., 2019] con-
sider the skipgram model, where dependencies between a target word and a context
word are represented by a separated matrix that transforms the context embedding:

I Same context word and vector, different dependency, hence the dependency ma-
trix transforms the context word to fit it’s role in the sentence;

I In theory this approach could scale up, but it takes into account only dependen-
cies, not syntactic types!

Discussion

I Different methods for learning representations have been explored

I Generally, taking the view that words ought to be higher-order tensors pending
their syntactic type, leads to hard to scale methods or untractable learning.

I We need an approach that still takes syntactic/semantic types into account for
modelling the relational behaviour of words, without sacrificing tractability.

I A more generalizable approach like the dependencies-as-matrices approach of
[Czarnowska et al., 2019], still does not distinguish content from function words.

The Shackles of Linearity

Linear non-linearity

Trade offs We have traded in the formal semantics account of compositionality for
a vector-based semantics that is strictly linear (algebraic)

Escapes As we can duplicate variables in lexical λ terms, we can replicate that process
in a vector-based setting using Frobenius Algebras:

λPλQλx.P x ∧Q x Mijuj ρikm Nklvl

No escape? The example above is a linear non-linearity, as Frobenius Algebras are
still linear in the (linear) algebraic sense.

Tractability The approaches to directly learn tensor representations, may use deep
neural nets, but the representations are hard to learn and they end up being used in a
linear algebraic way.

Deep Learning? Are we confined to the shackles of linearity? Or are there ways to
escape the boundaries of linear algebra without compromizing compositionality?

Stay tuned...

References

Marco Baroni and Roberto Zamparelli. Nouns are vectors, adjectives are matrices:
Representing adjective-noun constructions in semantic space. In Proceedings of the
2010 conference on empirical methods in natural language processing, pages 1183–
1193, 2010.

Paula Czarnowska, Guy Emerson, and Ann Copestake. Words are vectors, dependencies
are matrices: Learning word embeddings from dependency graphs. 2019.

Jean Maillard and Stephen Clark. Learning adjective meanings with a tensor-based
skip-gram model. In Proceedings of the Nineteenth Conference on Computational
Natural Language Learning, pages 327–331, 2015.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. Advances in neural
information processing systems, 26, 2013.

Tim Van de Cruys, Thierry Poibeau, and Anna Korhonen. A tensor-based factorization
model of semantic compositionality. In Conference of the North American Chapter
of the Association of Computational Linguistics (HTL-NAACL), pages 1142–1151,
2013.

Gijs Wijnholds, Mehrnoosh Sadrzadeh, and Stephen Clark. Representation learning for

type-driven composition. In Proceedings of the 24th Conference on Computational
Natural Language Learning, pages 313–324, 2020.

Gijs Jasper Wijnholds. Coherent diagrammatic reasoning in compositional distribu-
tional semantics. In Logic, Language, Information, and Computation, pages 371–
386. Springer Berlin Heidelberg, 2017. doi: 10.1007/978-3-662-55386-2 27. URL
https://doi.org/10.1007%2F978-3-662-55386-2_27.

https://doi.org/10.1007%2F978-3-662-55386-2_27

