Compositional Models of Vector-based Semantics:

From Theory to Tractable Implementation

Day 5: Evaluation. Experimenting with Semantic Tasks

Gijs Wijnholds & Michael Moortgat

ESSLLI 2022



Abstract

Vector-based compositional architectures combine a distributional view of word
meanings with a modelling of the syntax-semantics interface as a structure-preserving
map relating syntactic categories (types) and derivations to their counterparts in a
corresponding meaning algebra.

This design is theoretically attractive, but faces challenges when it comes to
large-scale practical applications. First there is the curse of dimensionality resulting
from the fact that semantic spaces directly reflect the complexity of the types of the
syntactic front end. Secondly, modelling of the meaning algebra in terms of finite
dimensional vector spaces and linear maps means that vital information encoded in
syntactic derivations is lost in translation.

The course compares and evaluates methods that are being proposed to face
these challenges. Participants gain a thorough understanding of theoretical and
practical issues involved, and acquire hands-on experience with a set of user-friendly
tools and resources.



Recap: The Compositional Process
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Parsing Composition

EVALUATION

» Our core methodology provides syntax and the interfacing with semantics,
» Lexical content is learnable, though not always in a tractable way (Tue)

» Syntax doesn’'t come for free: type induction & parsing as learnable processes
(Wed/Thu)

» In the end, the phrase semantics can be applied to NLP tasks (Fri)



Today: The Compositional Process

Lexical
Content

Type
induction

Structure
Respect

Parsing Composition

» Evaluating tensor-based models

» Linguistic variation: Dutch vs English Natural Language Inference
» Discontinuous constituency and lexical knowledge: taking down BERT

» Closing off, and what is next?



Evaluating composition models



Dream Machine

“A sentence embedding is a numerical and meaningful representation”

Tensor Embedder
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Assessing Word Similarity

Comparing Vectors Recall that we can use cosine similarity between vectors:

A

w5
%
wl sim(w], wh) = cos(0) = ﬁ;l ||$|
1]|w?

~

Word Similarity Datasets By asking participants to rank word pairs for similarity on
a scale (e.g. 1-7), taking the average rating, we get gold standard similarity ratings.

Evaluating Models To get to a single score for a given word embedding model, we
compute the Spearman p rank correlation coefficient of the gold standard similarity
against the cosine similarity over vectors for the word pairs in the dataset. Spearman
p values lie between 1 (ranking by gold standard equals ranking by cosine similarity)
and -1 (ranking by gold standard is reverse w.r.t. ranking by cosine similarity)



A Brief History of Word Similarity Datasets

Word similarity datasets

Name #Pairs Categories Reference

RG 65 nouns

MC30 30 nouns [
WordSim353 353 nouns [
VerbSim 130 verbs [
MEN 3000 nouns, adjectives, verbs |
SimLex 999 nouns, adjectives, verbs [ ]
SimVerb 3500 verbs [ ]

Word similarity results

RG WordSim353 MC30 SimLex MEN
Count 0.608 0.358 0.546 0.259 0.553
Word2Vec 0.823 0.698 0.768 0.403 0.781
GloVe 0.831 0.618 0.738 0.390 0.773
FastText 0.772 0.546 0.696 0.402 0.768




Evaluating Tensors

No Tensor in Cosine For matrices (order 2), cubes (order 3), tesseracts (order 4)
etc. cosine similarity doesn’t apply (viz. what is the angle between two matrices?)

Parametric Comparison We view tensors as maps: two tensors are similar when they
transform the same arguments into similar vectors:

e
tensorsim(T1,T2) = med cos(Tidy...dp, T2di...dy)
(dy,sdn)ED
New Formulas For two verbs Vi, V5:
matsim®  med cos(V1 5, V2 9)
Tes o
matsim® %1ed cos(Vi 0, Va2 d)
€0
cubesim med cos(Vlﬁ?,Vzﬁ?)

(¥,9)eA

Combinatorial Issues It is intractable to consider all possible word vectors in the vo-
cabulary, so instead we can take the centroids of a bunch of word vectors as arguments

to the tensors that we compare.



Assessing Sentence Similarity

Cosine Everywhere Cosine similarity naturally extends to sentence vectors:

sim(C(wt, ..., w5), C(V1, ..., vm)) =

G C(wi, ..., wy) - C(V7, ..., )
cos(6) = iy 0n) VLo D
|C(wi, ..., w,)||C(VT, ..., Um)]

~

Disambiguation in context Given a verb with two interpretations, and some context,
choose the correct interpretation:

painter draw sword  painter pull sword  painter depict sword
samurai draw sword samurai pull sword samurai depict sword

Comparing sentences Given two sentences, how similar are they?

painter draw sword vs. author write book



A Brief History of Evaluation: Sentences

Sentence similarity datasets

Name #Pairs Sentences Task Reference

ML2008 200 sv/vo disambiguation [
ML2010 200 sv/vo similarity [
GS2011 200 svo disambiguation

KS2013a 100 svo disambiguation

KS2013b 108 svo similarity [ ]
ELLDIS 400 s v o and s* too disambiguation

ELLSIM 432 s v o and s* too similarity

The Task Given a sentence, decide which vectors and tensors, in combination with
which composition model, gives the best correlation scores.

A Remark These datasets target sentences in a specific format, so they are limited
in scope, but allow us to evaluate very specifically*

*there are many other, more general sentence level datasets, to be discussed a bit later today



Composition Models

Transitive sentences | , ] performs an evaluation study for several
datasets containing transitive sentences, and gathers several composition models.

Verb matrix Two ways of constructing a verb matrix:

verb:Zsubjié@aZj—; @:m(@;&%

ij

Composition models

Verb only verZ/verb/verb
Additive S’Lbbj + ve Z + oi])
Multiplicative subj ® ver?) ® ob]
Relational verb O (subj ® Obj)
Kronecker (verl,) ® verb) ® (subj ® ob])
) — —
Copy Subject subj ® (verb X ob])
Copy Object c@) ® (verb X subg)
Frobenius add.  (subj ® (verb x Ob])) + (0755 ® (verbT X suby))
. — — — —T  —
Frobenius mult.  (subj ® (verb x 0bj)) ® (obj © (verb x subj))
: — = - ——T  —
Frobenius outer  (subj ® (verb x obj)) ® (obj ® (verb x subj))



Disambiguation

Sentence dataset results

Tensor-based for the win! :-)

[

KS2013a Count Based Word2Vec GloVe FastText
Verb Only Vector 0.108 0.199 0.132 0.112
Verb Only Tensor 0.093 0.100 0.065 0.040
Additive 0.104 0.210 0.174 0.117
Multiplicative 0.279 0.334 0.110 0.302
Best Tensor 0322 FM~ (0415 FA™~ 0.140 FA~ 0368 FA™
2nd Best Tensor 0258 CO™~ 0.408 CS™~ 0.123 FO™~ 0.334 CS~
Similarity No way to beat addition :-(
KS2013b Count Based Word2Vec GloVe FastText
Verb Only Vector 0.521 0.665 0.535 0.705
Verb Only Tensor 0.456 0.617 0.504 0.563
Additive 0.677 0.763 0.719 0.764
Multiplicative 0.719 0.528 0.283 0.587
Best Tensor 0.745 FM™~ 0623 RE~ 0427 FO~ 0641 FO~
2nd Best Tensor 0739 FO~ 0578 RE~ 0.418 RE~ 0637 RE -




Composing Elliptical Phrases

To resolve or not to resolve For a sentence [ , ]
subj verb obj and subj* does too

we can use the transitive composition models from before (denoted by T') and now
distinguish between models that resolve ellipsis or not:

Composition Models

Model Formula (% : addition, multiplication)

Verb only ver?)/verb/z;}/b

Additive subj + verz + o_bg)' + EL?L?i + subj* + does + tz))
T e oo o a6 suhit & ook

Multiplicative subj ® verb ® obj ® and ® subj* ® does ® t—o_g

Additive non-linear subj + verb + obj + subj™ + verb + obj

Multiplicative non-linear subj ® verb ® obj ® subj* ® verb ® obj

—_— — — ——
Tensor Based T (subj,verb, obj) x T'(subj*, verb, obj)

— —
Frobenius T(subj x subj*, verb, obj)




Ellipsis Disambiguation Results

ELLDIS Count Based Word2Vec GloVe FastText
Verb Only Vector 0.436 0.241 0.445 0.229

Verb Only Tensor 0.330 0.438 0.394 0.388

Add. Linear 0.442 0.273 0.305 0.141

Mult. Linear 0.325 -0.012 0.182 0.293

Add. Non-Linear 0.445 0.328 0.326 0.140

Mult. Non-Linear 0.503 0.209 0.245 0.044

Best Tensor 0539 COY¥ 0462 FAT 0373 COSF 0494 FO¥F
2nd Best Tensor 0526 FA ¥ 0454 FOF 0369 FAT 0.465 FA F
Best KaCo 0539 COG® 0462 FAF 0397 FAG 0497 FOTF
2nd Best KaCo 0.527 FO & 0460 FO¥+ 0.369 FA+ 0.465 FA +

Analysis

» It pays to resolve ellipsis for the baseline models

» Tensor-based better, no distinction between classical and Frobenius copying.



Ellipsis Similarity Results

ELLSIM Count Based Word2Vec GloVe FastText
Verb Only Vector 0.457 0.583 0.435 0.647

Verb Only Tensor 0.395 0.566 0.443 0.534

Add. Linear 0.700 0.726 0.696 0.741

Mult. Linear 0.633 0.130 0.367 0.199

Add. Non-Linear 0.681 0.762 0.710 0.739

Mult. Non-Linear 0.723 0.355 0.244 0.450

Best Tensor 0741 FO & 0706 REF+ 0491 FAT 0699 FO F
2nd Best Tensor 0.737 FA ® 0671 FOF+ 0482 FO¥ 0688 COO
Best KaCo 0732 FM(® 0706 REF 0491 FA¥ 0702 FO ¥
2nd Best KaCo 0730 FA © 0668 FOF¥ 048 FOF 0.682 RE ¥

Analysis

» It pays to resolve ellipsis (again)

» Tensor-based may outperform linear addition

» Classical copying beats Frobenius copying



Neural Verb Tensors to the Rescue?

Tensor Skipgram Remember that we could learn ‘decomposed’ tensor representations

for verbs:

Representation Rank Context
711 vector linear window
T/ Vo)V vector  objects/subjects/both
Vf/VaO matrix  full sentence
Vf/VS matrix objects/subjects
Va cube full sentence
Verb Similarity

7a 7s/o/b Va Vs/a Va
MEN, 0.282 0.248 0.500 0.589 0.035
SimLex, 0.046 0.272 0.163 0.340 0.024
VerbSim 0.338 0.563 0.085 0.550 -0.076
SimVerb; 0.224 0.249 -0.023 0.291 -0.012
SimVerb, 0.183 0.197 0.019 0.240 -0.025




Neural Verb Tensors vs. Sesame Street

Results | , ] compares verb skipgram tensors against other tensor-
based models, and to state-of-the-art sentence embedding methods:

ML08 ML10 GS11 KS13a KS13b ML08 ML10 GS11 KS13a KS13b

0.17 054 019 0.8 067 Wﬁ/s“’ 019 055 054 037 075
Viron) 0.08 040 020 028 053 g 018 063 030 017 078

Vi) 019 051 032 019 051 yep 004 033 009 021 054

c(+)

C(

C(

scnt\s/o

(Viy ™) -004 000 025 020 054 grae 047 054 011 024 073
(v

(v

QQ

V) 019 055 054 037 075 BERT, 019 034 024 032 06l
CVig™) —  — 002 004 006 BERT; 032 074 061 032 082

Human 066 071 074 058 075 Human 0.66 0.71 0.74 0.58 0.75

More results Including the SICK dataset, which contains longer & ‘natural’ sentences.

Add Kron Rel V(’/*” IS USE BERT, BERT;

ELLDIS 0.31 0.30 0.37 0.56 0.34 0.27 0.36 0.65
ELLSIM 0.67 0.52 0.65 0.76 0.80 0.68 0.67 0.79
SICK-R 0.71 0.58 0.44 0.70 0.74 0.76 0.70 0.76




What we learn from this

Disambiguation Tensor-based composition models seem to be better at disambigua-
tion in context.

Similarity Simple addition of word vectors outperforms tensor-based models in the
case of sentence similarity.

Composition Models vs Encoders The same pattern persists when we compare with
sentence encoders, that can achieve higher results on sentence similarity but are still
stuck at verb disambiguation in context.

To resolve or not to resolve In almost all cases, models resolve ellipsis achieve higher
performance than models that don’t. For the case of tensor-based models the resolution
is handled by the syntactic front-end, whereas sentence encoders would require such a
front-end to be implemented still — we need grammar(/semantics)!

The Great Disclaimer It is intractable to try out all possible representation methods,
composition models, etc., and they do not easily scale up to larger evaluation datasets
where sentence length is not given in advance. Even on the SICK dataset, compromises
have to be made in order to evaluate these tensor representations.



Large-scale NLP Evaluation



Natural Language Inference

Entailment? Given a premise s1, and a hypothesis s3, decide whether the premise
Entails, Contradicts, or is Neutral with respect to the hypothesis.

Human Inferences Some examples from the SICK | : ] dataset:
Premise Hypothesis Label
A deer is jumping over a fence A deer isn't jumping over a fence C
A player is running with the ball Two teams are competing in a football match N
An old man is sitting in a field A man is sitting in a field E

NLI Datasets

» Larger and more fuzzy: SNLI | ) 1
» Multi-genre: MNLI [ , I

» Multi-lingual: XNLI [ . 1

» With explanations: e-SNLI | ) 1

» etc...



BERT for NLI

Freeze! We can choose to fine-tune or to extract, by ‘freezing’ the BERT layers:

Prediction : CONTRADICTION

Classifier

Transformer Layer 12 Transformer Layer 12

Transformer Layer 2 Transformer Layer 2

Transformer Layer 1 Transformer Layer 1

[CLS] | like to draw  [SEP] | hated drawing this [SEP]



Analyzing NLI Models

Generalization Models trained on one NLI dataset may not perform well on another
set | , :

Train Test Acc. Model

SNLI SNLI 90.4 BERT-base
SNLI  MNLI 755 BERT-base
SNLI  SICK 56.9 BERT-base

Specialized Reasoning Monotonicity Entailment Dataset | , ]

P: Every [np person ] [ve bought a movie ticket T]

Exam ple: H: Every young person bought a ticket

Model Train Upward Downward Non  All

BERT SNLI 50.1 46.8 7.5 458

Analyzing/Probing Lots of work into investigating NLI models (and contextualized
representations) [ , , . . , ,

, 2019]



Reasoning in Dutch

SICK-NL | ,
dataset into Dutch.

Dutch vs English

] semi-automatically translated the SICK

SICK  SICK-NL
No. of tokens 189783 176509
No. of unique tokens 2328 2870
Avg. sentence length 9.64 8.97
Avg. word overlap 66.91%  58.99%

Comparing BERTs

A comparison shows that the Dutch incarnation is harder to solve:

SICK SICK-NL
BERT 87.34 BERTje 83.94
mBERT 87.02 mBERT 84.53
RoBERTa 90.11 RobBERT 82.02




Error Analysis

BERT  Prediction EN-NL Prediction EN Prediction NL
C N E rec. C N E rec. C N E rec.
- C 549 62 16 83% 46 271 12 54% 22 52 11 26%
S N 35 M 147 9% 37 83 55% 32 43%
E 3 143 0350 83% 3 53 5% 3 55 25%
pr 94% 92%  86% 53% 65% 64% 39% 35% 30%
mBERT
- C 55 69 10 88% 24 4 9 30% 42 31 7 52%
S N 32 [l 106 94% 9 89" 68% | 71 93 30%
E 3 160 [[1015 86% 0 | 103 54% 15 100 | 44%
pr 9%  91% 90% 3% 58% 56% 33% 40% 40%
RoBERTa
- C [563 68 4 89% 27 46 4 35% 35 28 14 45%
g N 25 Bl 2 9% 6 971 73% | 19 96 25%
E 1 108 79957 90% 2 = 42 85% 15 39 13%
pr. 96%  93% 2% 1% 6%  T2% 21%  26%  15%

Model mistakes Where the models disagree between the English/Dutch premise-
hypothesis pairs, the Dutch models have a higher tendency to classify Entailment as
Neutral, and Neutral as Entailment.



Patterns in Dutch

Prepositional phrase the attachment of a PP in Dutch may be interchangedly placed
before or after the verb:

A woman is wakeboarding on a lake —  Een vrouw is aan het wakeboarden op een meer
A woman is wakeboarding on a lake —  Een vrouw is op een meer aan het wakeboarden
Simple present vs present continuous
The man is swimming — De man is aan het zwemmen
The man is swimming —  De man zwemt

Stress Testing

present cont. — present simple
Before  After — —

BERT 8455 86.63 93.21 92.43
mBERT 86.11 84.90 94.26 94.52
RobBERT 8281 81.94 86.16 84.33

prep. phrase order switch

BERT 81.03 78.45 85.06 85.06
mBERT 87.93 85.34 85.06 80.46
RobBERT 76.72 75.86 7241 73.56




Logical Reasoning on Dutch

Return of the Lambdas | , ] implement a system that
uses neurally learnt lambda terms for tackling the SICK-NL dataset:

Syntactic Simplified Fixed
term / semantic term /1 semantic term

Type-raising
quantified NPs

A}

X

LangPro

Neural Proof Nets

Simplifying types & pos tags Fixing analysis:
(many-to-one mapping) use pos tags & lemmas

Example
(nld) mannen zijn hout aan het snijden
(sim) zijn?P("(s) (aan_het””(””) (snijden"("p) hout™)) mannen”
(fix) 2ijn?P("P(s) (aanhet”p(“p) (snijden"p(“p) (een"’(np) hout™))) (s"<"p) man”)
(111) s(P(5)) man (zijn (aan_het ()\Jf.eenn(vp(s)) hout (Ay.snijden y"P 2"P))))
Results
Model Accuracy Hybrid
LangPro 2 78.8 -
BERTje 82.0 81.8
RobBERT 81.7 82.6

mBERT 79.9 80.6



Evaluating syntactic patterns



Probing Discontinuity

Goal | , ] studies BERT embeddings to see the extent
to which they contain lexical knowledge about control verbs, and the extent to which
they are invariant under word order permutations in the case of verb raising.

The plan

1. Generate test data for verb-subject dependencies in discontinous settings,

2. Generate in a controlled way and generate samples that are naturalistic (i.e.
humans can understand them),

3. Training a probing model to recognise verb-subject dependencies,

4. Analyzing the results

Refinement We refine the generation using the ACG format seen on Wednesday,
which allows us to carry out analysis in much more detail.

DIY https://github.com/gijswijnholds/discontinuous-probing


https://github.com/gijswijnholds/discontinuous-probing

Generating Test Data: Verb Raising

Crossing Dependencies

e

...dat Jan Marie dekinderen ziet leren fietsen
... that Jan Marie the children see teach cycle

‘...that John sees Mary teach the kids to cycle’

Generating samples Using an MCFG 4 annotations indicating verbs and their cor-
responding subjects:

S(zy1y2) +— PREF(z) SUB(y1,72) (B1)
SUB(z,y) <— NP(z) INF;(y) (B2)
SUB(zy,z) «— NP(x) NP(y) INFgy(2) (Bs)
SUB(zz,yu) <— NP(z)RV(y) SUB(z,u) (Ba)
Example
(a)  de docent ziet [de student| [de hond] de oefeningen [helpen] [leren]

(EN) the teacher sees [the student] [help] [the dog] [teach] the exercises



Generating Test Data: Control Verbs

Understood subject Control verbs pass their own subject/object to the infinitive
verbal complement that they select for.

(Simple) Example

(a) [de student] belooft de docent  [te vertrekken|
(b) de student vraagt [de docent]  [te vertrekken]
(EN) the student  promises/asks  the teacher to leave
The MCFG

S(zyzuiuz) +— NP(z) TV(y) NP(2) VC(u1,us2) (A1)
S(zyzuwivwy) —  NP(x) TV(y) NP(z) NP(u) CV(v) vC(wi, ws) (Az)
ve(z,y) «— TE(x) INFiy(y) (A3)
vC(zz,y) <— TE(z) INFgy(y) NP(2) (Ay)
vC(zy, zupu1) —  NP(x) TE(y) INF.(z) VC(up, u1) (45)
VC(zyu, z2v1v2)  —  NP(z) TE(y) INF.(2z) CV(u) VC(v1,v2) (Ae)
S(zyzvujug) <— NP(z) TV(y) NP(2) VC(u1,u2) ADV(v) (AT
S(vyzzujug) <— NP(z) TV(y) NP(2) VC(u1,u2) ADV(v) (AY)



Probe Design

[de student] [vraagt] [de docent] [de opdrachten] [te maken]

} } }

Global Attention (Span Aggregation)
W W w 1 for verb spans, 1 for noun spans
N1 V1 N2 N3 V2
v ov v
Sparse Attention © N1 N2 N3
(Masked) attention weights
V1 X

\ 4

V2 X

v




Training Data

Lassy-Small is a gold standard dataset of written Dutch, containing ca. 65k sen-
tences, that include both continuous and discontinuous verb-subject dependencies:

top
top

top

top
smain let

smain let u
hd 14 cmp body
ww op vz inf
gaan te
aat te
@ hd objt su hd
vz n 1 ww
naar huis ertrekken
) vertrekken
naar  huis

The student goes home The student promises to leave



Results

Validation vs test results The prober works fine, but our generated test sets are very
challenging:

Model Lassy Control Raising
BERTje 97.6 48 43.1
RobBERT 92.5 40.6 29.2

Investigating further Because we are using a grammar that generates syntax trees,
we can inspect the results, filtering by the complexity of the generated sentences:

# Nouns Tree Depth Rule
Model 2 3 4 5 2 3 4 A A Ay A Ay A
BERTje 81.1 58.8 50.5 42.9 61.8 52.7 46.8 100 67 43.1 34.6 36.1 27.1
RobBERT 73 52.8 42.4 35.9 58.3 47.2 38.8 93.6 58.1 41.2 19.6 21 17
(a) Control Verb Grammar
# Nouns Tree Depth Rule

Model 2 3 4 5 2 3 4 5 6 B> Bs By
BERTje 75.6 52.4 33.5 25.5 92.2 66.4 40.5 29 23 53.4 53.8 36.7
RobBERT  46.3 37.2 24.5 11.4 65.6 36.9 33.6 19.4 12.6 89.1 24.3 12.9

(b) Verb Raising Grammar



Recap: Doing it the Diamond Way

iets

w t zeggen
1 ¢
(iets)“"] = Oopynp Qopjnp\inf
— - nE)
haar (iets)°% - zeggen - inf 1 laten .
" | ((iets)? - zeggen)'® b Oyoinf Quetnf\ (Copjnp\inf) 0B
(haar)° | $opnp ((iets)? - zeggen)¥ - laten - {opynp\inf »
(haar)°% . ({(iets)°"’ - zeggen)'® - laten) I in f of (] willen
((haar)?% . ({(iets)?" - zeggen)'* - laten))"" I {ycinf ] Oueinf\inf 5
np (Qsunp\8)/Oveinf , ((haar)?¥ . (((iets)*" - zeggen)® - laten))"* - willen I inf ol (]
hij ¢ zal ({(haar)°®7 . ({{iets)°" - zeggen)¥ - laten))** - willen)* k- $yein f U]
— [OI
(hij)** F Osunp 1] zal - (((haar)°® . ({(iets)°" - zeggen)* - laten))"® - willen)"® F Ogump\s =
(hij)** - (zal - (((haar)?% . ({(iets)*% - zeggen)' - laten))c - willen)"¢) |- s (&
ACG all the way
[t]t"9 = hij-zal-haar-iets-willen-laten-zeggen
[1]°¢™ = WILL (WANT AY*((LET A"°(SAY A°Y SOMETHING)) A°Y HER)) A®" HE
pair  — zal,hij),(willen,hij),(laten,hij),(zeggen,haar
J ] ] g8



Doing it the Diamond Way: Samples

273 Samples

AST
Surface
Semantics
Pairing

AST
Surface
Semantics
Pairing

AST
Surface
Semantics
Pairing

3 (zo d7) (h1 (f1 ds di))
hij zal dreigen iets te zeggen

(zal (Ove(dreigen (Guc(te (Oue(zoggen (Gosiets)))))) (Guubis)
[(zal,hij), (dreigen,hij), (zeggen,hij)]

ro (go (ho(h1 (f1 ds di)) ds) d2)
hij zal jets willen proberen te zeggen

(zal (Oue(willen ($ye(proberen ($uc(te (Oue(zeggen (Gopjiiets)))))))))) (Gsuhij)
[(zal,hij),(willen,hij), (proberen,hij), (zeggen,hij)]

3 (z1 (zo d7) d2) (h1 (f1 ds di))
hij zal willen dreigen iets te zeggen

(zal (Oue(willen (Ooe(dreigen (Qoc(te (Quezeggen (Oopjiiets)))))))))) (Osuhij)
[(zal,hij),(willen,hij), (dreigen,hij), (zeggen,hij)]



Doing it the Diamond Way: Populating the lexicon

The lexicon

Category Description

Examples

INFO intransitive infinitive vertrekken, stemmen, verliezen, ...
INF1 transitive infinitive with inanimate object zeggen, begrijpen, merken, ...
INF1A transitive infinitive, animate object ontmoeten, bedanken, kennen, ...
IVRO obligatory verb raiser willen, zullen, moeten, ...

IVR1 obligatory verb raiser, subject flipper laten, doen

IVR2 non-obligatory verb raiser proberen, weigeren, trachten, ...
INF2 extraposition proberen, weigeren, trachten, ...
INF3 extraposition, object control verzoeken, dwingen, verplichten, ...
INF4 extraposition, subject control beloven, verzekeren, zweren, ...

OBJ1A animate direct object
OBJ1I inanimate direct object
OBJ2 indirect object

Karin, Wouter, ...
iets, veel, een ding, ...
Karin, Wouter, ...



Results

Validation vs test results The probe does not perform as well on the generated data:

Validation set (Lassy) Test set (generated)

Accuracy 97.60 79.47
Random Baseline 13.24 39.24

By number of nouns Again, the more nouns, the more challenging the test case:

Number of nouns 2 3 4

Accuracy 86.87 75.66 68.76
Random Baseline 50.00 33.33 25.00




Raising, Extraposition, and Infinitives

Raising
0BJ, 0BJ! IVRo IVR;  INF;
hij =zal haar iets willen laten zeggen
he will  her something  want let say
Extraposition
0BJo INF3 0BJI TE INF;
hij zal haar dwingen iets te zeggen
he will  her force something to say

By verbal type Extraposition slightly easier, as there is no cluster. Infinitives are
worse, because they typically are far removed from their understood subjects:

Verbal type Raising Extraposition Infinitive

Accuracy 81.00 87.03 68.77
Random 39.86 38.27 39.24




Verb Dominance

Dominance
0BJ, 0BJ! IVR, IVR,
hij =zal haar iets willen laten zeggen
he will  her something  want let say
INFo 0BJ2 OBJ{ TE 1IVRy
hij =zal proberen haar iets te laten zeggen
he will  try her something to let say

Results Verbs under the scope of an extraposition verb are more challenging!
Dominated verb, grouped by verbal type

Dominated by raising Overall Raising Extraposition Infinitive
Accuracy 76.18 76.23 717.76 74.68
Random Baseline 39.86 41.23 38.60 39.76

Dominated by extraposition

Accuracy 66.70 67.35 85.35 59.62
Random Baseline 38.27 38.60 36.84 38.30




Verb Dominance

An orthogonal view we distinguish the different subcategories of verbs that govern

other verbs:
Dominating verb, by subcategory

Dominated by raising Overall IVRO IVR1 IVR2
Accuracy 76.18 78.54 71.41 77.95
Random Baseline 39.86 41.06 37.09 41.05
Dominated by extraposition Overall INF2 INF3 INF4
Accuracy 66.70 86.74 57.12 47.12
Random Baseline 38.27 42.58 35.13 35.13

It’s all about control

0BJ;  INF4/INF3 0BJ! TE INF,
hij =zal haar beloven/dwingen iets te =zeggen
he  will  her promise / force something to say



Verb Dominance

An orthogonal view we distinguish the different subcategories of verbs that govern

other verbs:
Dominating verb, by subcategory

Dominated by raising Overall IVRO IVR1 IVR2
Accuracy 76.18 78.54 71.41 77.95
Random Baseline 39.86 41.06 37.09 41.05
Dominated by extraposition Overall INF2 INF3 INF4
Accuracy 66.70 86.74 57.12 47.12
Random Baseline 38.27 42.58 35.13 35.13

It’s all about control

0BJ, INF;,, OBJ] TE INF;
hij =zal haar [MASK] iets te zeggen
he will  her [MASK] something to say
Object (INF3) Subject (INF4) Other

Control preference of governed verb 35.08 59.20 5.72




Word order variations

Semantic equivalence We can group samples that originate from different ASTs,
have identical semantics, but different surface realizations:

a.  hij zal haar proberen[IVR2] te willen ontmoeten

he will her try to want meet
b.  hij zal proberen[INF2] haar te willen ontmoeten
he will try her to want meet

‘he will try to want to meet her’
Results Extra confirmation that extraposition is the easier construction to recognize.

Context in the sentence

Raising construction Above Verb Below
Accuracy 95.09 86.22 78.15
Random Baseline 42.54 41.47 41.44

Extraposition construction

Accuracy 96.49 93.04 78.50
Random Baseline 42.54 41.48 41.44




Epilogue



Conclusion of the day

Evaluating tensor-based models is possible, but quickly gets intractable,
» We seem to always ‘lose’ to BERT,

» But BERT is not the answer: we showed that BERT embeddings are not (inher-
ently) capable of recognizing verb-subject dependencies (in Dutch).

» Types to the rescue? We will have to put effort in downstream tasks that can
make good use of lambda terms, or require subtle linguistic reasoning



Conclusion of the week

» Compositionality as a guiding principle for semantic reasoning

» Once the toolkit is in place, we can address the linguistic subtleties that models
like BERT may not understand all too well

» The dream: integrating compositional tools/methods with neural reasoning
» For example:

1. Using syntactic/semantic terms as input on downstream tasks

2. Merging syntactic/semantic terms with BERT embeddings [ ,

DIY What would you do?

> See next week's workshop for the latest developments in the field

» Or read up at: http://dx.doi.org/10.4204/EPTCS.366

We thank the NWO for supporting this project: https://compositioncalculus.sites.uu.nl/


http://dx.doi.org/10.4204/EPTCS.366
https://compositioncalculus.sites.uu.nl/

Apotheosis

VARV I

But the greatest ingredient:

(and funding)
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