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Abstract

Vector-based compositional architectures combine a distributional view of word
meanings with a modelling of the syntax-semantics interface as a structure-preserving
map relating syntactic categories (types) and derivations to their counterparts in a
corresponding meaning algebra.

This design is theoretically attractive, but faces challenges when it comes to
large-scale practical applications. First there is the curse of dimensionality resulting
from the fact that semantic spaces directly reflect the complexity of the types of the
syntactic front end. Secondly, modelling of the meaning algebra in terms of finite
dimensional vector spaces and linear maps means that vital information encoded in
syntactic derivations is lost in translation.

The course compares and evaluates methods that are being proposed to face
these challenges. Participants gain a thorough understanding of theoretical and
practical issues involved, and acquire hands-on experience with a set of user-friendly
tools and resources.



Recap: The Compositional Process
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I Our core methodology provides syntax and the interfacing with semantics,

I Lexical content is learnable, though not always in a tractable way (Tue)

I Syntax doesn’t come for free: type induction & parsing as learnable processes
(Wed/Thu)

I In the end, the phrase semantics can be applied to NLP tasks (Fri)



Today: The Compositional Process
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I Evaluating tensor-based models

I Linguistic variation: Dutch vs English Natural Language Inference

I Discontinuous constituency and lexical knowledge: taking down BERT

I Closing off, and what is next?



Evaluating composition models



Dream Machine

“A sentence embedding is a numerical and meaningful representation”
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Assessing Word Similarity

Comparing Vectors Recall that we can use cosine similarity between vectors:

−→w1

−→w2

θ

sim(−→w1,
−→w2) = cos(θ) =

−→w1 · −→w2

|−→w1||−→w2|

Word Similarity Datasets By asking participants to rank word pairs for similarity on
a scale (e.g. 1-7), taking the average rating, we get gold standard similarity ratings.

Evaluating Models To get to a single score for a given word embedding model, we
compute the Spearman ρ rank correlation coefficient of the gold standard similarity
against the cosine similarity over vectors for the word pairs in the dataset. Spearman
ρ values lie between 1 (ranking by gold standard equals ranking by cosine similarity)
and -1 (ranking by gold standard is reverse w.r.t. ranking by cosine similarity)



A Brief History of Word Similarity Datasets

Word similarity datasets

Name #Pairs Categories Reference

RG 65 nouns Rubenstein and Goodenough [1965]

MC30 30 nouns Miller and Charles [1991]

WordSim353 353 nouns Finkelstein et al. [2001]

VerbSim 130 verbs Yang and Powers [2006]

MEN 3000 nouns, adjectives, verbs Bruni et al. [2012]

SimLex 999 nouns, adjectives, verbs Hill et al. [2015]

SimVerb 3500 verbs Gerz et al. [2016]

Word similarity results

RG WordSim353 MC30 SimLex MEN

Count 0.608 0.358 0.546 0.259 0.553
Word2Vec 0.823 0.698 0.768 0.403 0.781
GloVe 0.831 0.618 0.738 0.390 0.773
FastText 0.772 0.546 0.696 0.402 0.768



Evaluating Tensors

No Tensor in Cosine For matrices (order 2), cubes (order 3), tesseracts (order 4)
etc. cosine similarity doesn’t apply (viz. what is the angle between two matrices?)

Parametric Comparison We view tensors as maps: two tensors are similar when they
transform the same arguments into similar vectors:

tensorsim(T1,T2) = med
〈d1,...,dn〉∈D

cos(T1
−→
d1 . . .

−→
dn,T2

−→
d1 . . .

−→
dn)

New Formulas For two verbs V1, V2:

matsimS med−→s ∈S
cos(V1

−→s , V2
−→s )

matsimO med−→o ∈O
cos(V1

−→o , V2
−→o )

cubesim med
〈−→s ,−→o 〉∈A

cos(V1
−→o −→s ,V2

−→o −→s )

Combinatorial Issues It is intractable to consider all possible word vectors in the vo-
cabulary, so instead we can take the centroids of a bunch of word vectors as arguments
to the tensors that we compare.



Assessing Sentence Similarity

Cosine Everywhere Cosine similarity naturally extends to sentence vectors:

C(−→w1, ...,
−→wn)

C(−→v1 , ...,−→vm)

θ

sim(C(−→w1, ...,
−→wn), C(−→v1 , ...,−→vm)) =

cos(θ) =
C(−→w1, ...,

−→wn) · C(−→v1 , ...,−→vm)

|C(−→w1, ...,
−→wn)||C(−→v1 , ...,−→vm)|

Disambiguation in context Given a verb with two interpretations, and some context,
choose the correct interpretation:

painter draw sword painter pull sword painter depict sword
samurai draw sword samurai pull sword samurai depict sword

Comparing sentences Given two sentences, how similar are they?

painter draw sword vs. author write book



A Brief History of Evaluation: Sentences

Sentence similarity datasets

Name #Pairs Sentences Task Reference

ML2008 200 s v/v o disambiguation Mitchell and Lapata [2008]

ML2010 200 s v/v o similarity Mitchell and Lapata [2010]

GS2011 200 s v o disambiguation Grefenstette and Sadrzadeh [2011]

KS2013a 100 s v o disambiguation Kartsaklis and Sadrzadeh [2013]

KS2013b 108 s v o similarity Kartsaklis et al. [2013]

ELLDIS 400 s v o and s∗ too disambiguation Wijnholds and Sadrzadeh [2019]

ELLSIM 432 s v o and s∗ too similarity Wijnholds and Sadrzadeh [2019]

The Task Given a sentence, decide which vectors and tensors, in combination with
which composition model, gives the best correlation scores.

A Remark These datasets target sentences in a specific format, so they are limited
in scope, but allow us to evaluate very specifically*

*there are many other, more general sentence level datasets, to be discussed a bit later today



Composition Models

Transitive sentences [Milajevs et al., 2014] performs an evaluation study for several
datasets containing transitive sentences, and gathers several composition models.

Verb matrix Two ways of constructing a verb matrix:

verb =
∑

ij

−−−→
subji ⊗

−−→
objj ṽerb =

−−→
verb⊗−−→verb

Composition models

Verb only
−−→
verb/verb/ṽerb

Additive
−−→
subj +

−−→
verb+

−→
obj

Multiplicative
−−→
subj �−−→verb�−→obj

Relational verb� (
−−→
subj ⊗−→obj)

Kronecker (
−−→
verb⊗−−→verb)� (

−−→
subj ⊗−→obj)

Copy Subject
−−→
subj � (verb×−→obj)

Copy Object
−→
obj � (verb

T ×−−→subj)
Frobenius add.

(−−→
subj � (verb×−→obj)

)
+
(−→
obj � (verb

T ×−−→subj)
)

Frobenius mult.
(−−→
subj � (verb×−→obj)

)
�
(−→
obj � (verb

T ×−−→subj)
)

Frobenius outer
(−−→
subj � (verb×−→obj)

)
⊗
(−→
obj � (verb

T ×−−→subj)
)



Sentence dataset results

Disambiguation Tensor-based for the win! :-) [Wijnholds, 2020]

KS2013a Count Based Word2Vec GloVe FastText

Verb Only Vector 0.108 0.199 0.132 0.112
Verb Only Tensor 0.093 0.100 0.065 0.040

Additive 0.104 0.210 0.174 0.117
Multiplicative 0.279 0.334 0.110 0.302

Best Tensor 0.322 FM ·̃ 0.415 FA ·̃ 0.140 FA ·̃ 0.368 FA ·̃
2nd Best Tensor 0.258 CO ·̃ 0.408 CS ·̃ 0.123 FO ·̃ 0.334 CS ·̃

Similarity No way to beat addition :-(

KS2013b Count Based Word2Vec GloVe FastText

Verb Only Vector 0.521 0.665 0.535 0.705
Verb Only Tensor 0.456 0.617 0.504 0.563

Additive 0.677 0.763 0.719 0.764
Multiplicative 0.719 0.528 0.283 0.587

Best Tensor 0.745 FM ·̃ 0.623 RE · 0.427 FO · 0.641 FO ·
2nd Best Tensor 0.739 FO ·̃ 0.578 RE ·̃ 0.418 RE · 0.637 RE ·



Composing Elliptical Phrases

To resolve or not to resolve For a sentence [Wijnholds and Sadrzadeh, 2019]

subj verb obj and subj∗ does too

we can use the transitive composition models from before (denoted by T ) and now
distinguish between models that resolve ellipsis or not:

Composition Models

Model Formula (? : addition, multiplication)

Verb only
−−→
verb/verb/ṽerb

Additive
−−→
subj +

−−→
verb+

−→
obj +

−−→
and+

−−−→
subj∗ +

−−→
does+

−→
too

Multiplicative
−−→
subj �−−→verb�−→obj �−−→and�−−−→subj∗ �−−→does�−→too

Additive non-linear
−−→
subj +

−−→
verb+

−→
obj +

−−−→
subj∗ +

−−→
verb+

−→
obj

Multiplicative non-linear
−−→
subj �−−→verb�−→obj �−−−→subj∗ �−−→verb�−→obj

Tensor Based T (
−−→
subj, verb,

−→
obj) ? T (

−−−→
subj∗, verb,

−→
obj)

Frobenius T (
−−→
subj ?

−−−→
subj∗, verb,

−→
obj)



Ellipsis Disambiguation Results

ELLDIS Count Based Word2Vec GloVe FastText

Verb Only Vector 0.436 0.241 0.445 0.229
Verb Only Tensor 0.330 0.438 0.394 0.388

Add. Linear 0.442 0.273 0.305 0.141
Mult. Linear 0.325 -0.012 0.182 0.293

Add. Non-Linear 0.445 0.328 0.326 0.140
Mult. Non-Linear 0.503 0.209 0.245 0.044

Best Tensor 0.539 CO +̃ 0.462 FA + 0.373 COS+ 0.494 FO+

2nd Best Tensor 0.526 FA +̃ 0.454 FO+ 0.369 FA+ 0.465 FA +

Best KaCo 0.539 CO �̃ 0.462 FA + 0.397 FA� 0.497 FO+

2nd Best KaCo 0.527 FO �̃ 0.460 FO+ 0.369 FA + 0.465 FA +

Analysis

I It pays to resolve ellipsis for the baseline models

I Tensor-based better, no distinction between classical and Frobenius copying.



Ellipsis Similarity Results

ELLSIM Count Based Word2Vec GloVe FastText

Verb Only Vector 0.457 0.583 0.435 0.647
Verb Only Tensor 0.395 0.566 0.443 0.534

Add. Linear 0.700 0.726 0.696 0.741
Mult. Linear 0.633 0.130 0.367 0.199

Add. Non-Linear 0.681 0.762 0.710 0.739
Mult. Non-Linear 0.723 0.355 0.244 0.450

Best Tensor 0.741 FO �̃ 0.706 RE + 0.491 FA + 0.699 FO +

2nd Best Tensor 0.737 FA �̃ 0.671 FO+ 0.482 FO+ 0.688 CO�
Best KaCo 0.732 FM �̃ 0.706 RE + 0.491 FA + 0.702 FO +

2nd Best KaCo 0.730 FA �̃ 0.668 FO+ 0.486 FO+ 0.682 RE +

Analysis

I It pays to resolve ellipsis (again)

I Tensor-based may outperform linear addition

I Classical copying beats Frobenius copying



Neural Verb Tensors to the Rescue?

Tensor Skipgram Remember that we could learn ‘decomposed’ tensor representations
for verbs:

Representation Rank Context
−→v a vector linear window−→v s/
−→v o/
−→v b vector objects/subjects/both

V
S

a/V
O

a matrix full sentence

V
S

o /V
O

s matrix objects/subjects

V a cube full sentence

Verb Similarity

−→v a
−→v s/o/b V a V s/o Va

MENv 0.282 0.248 0.500 0.589 0.035
SimLexv 0.046 0.272 0.163 0.340 0.024
VerbSim 0.338 0.563 0.085 0.550 -0.076
SimVerbd 0.224 0.249 -0.023 0.291 -0.012
SimVerbt 0.183 0.197 0.019 0.240 -0.025



Neural Verb Tensors vs. Sesame Street

Results [Wijnholds et al., 2020] compares verb skipgram tensors against other tensor-
based models, and to state-of-the-art sentence embedding methods:
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ML08 ML10 GS11 KS13a KS13b

C(+) 0.17 0.54 0.19 0.18 0.67
C(VKron) 0.08 0.40 0.20 0.28 0.53
C(VRel) 0.19 0.51 0.32 0.19 0.51
C(Vsent|s/o

(1) ) -0.04 0.00 0.25 0.20 0.54

C(eVo|s/s|o
(1) ) 0.19 0.55 0.54 0.37 0.75

C(Vsent|s,o
(2) ) — — -0.02 -0.04 0.06

Human 0.66 0.71 0.74 0.58 0.75

Table 7: Spearman ⇢ scores on compositional tasks.
C(+) denotes the additive model, whereas the other
rows represent the best score for compositional models
with different verb representations.

poorly, and in many cases worse than the vector rep-
resentations, illustrates that the choice of context is
too general for these higher-order representations.
On four out of the five tasks, our approximated
models that train unary maps with a restricted no-
tion of context, outperform all other models: the
most significant of these increases are for the 3000
entry test subset of the SimVerb dataset: here we
observe an increase from 0.18 to 0.24.

Table 6 shows the correlation scores on the verbs
of the SVO sentence level tasks. In this experi-
ment, we perform the sentence disambiguation and
similarity tasks by only using the verbs of the sen-
tences. We observe the same pattern in the results:
training verb vectors on dependency label contexts
slightly improves the performance. This is against
the erratic performance of the binary map repre-
sentations (on all but the ML2008 dataset). Again,
our approximated unary map representations with
a restricted context significantly outperforms the
other methods.

In the majority of the verb similarity datasets
we do not improve the state of the art, but in the
majority of the verb parts of the SVO sentence
datasets, we do.

4.2 Sentence Level Tasks

4.2.1 Verb Disambiguation and SVO
Sentence Similarity Datasets

The most interesting results, however, come from
the SVO sentence tasks. These compute a repre-
sentation for each sentence of the dataset by com-
posing the representations of the words of that sen-
tence, rather than by only working with individual
word representations, as was done in the previous

ML08 ML10 GS11 KS13a KS13b

eVo|s/s|o
(1) 0.19 0.55 0.54 0.37 0.75

IS 0.18 0.63 0.30 0.17 0.78
USE 0.04 0.33 0.09 0.21 0.54
ELMo 0.17 0.54 0.11 0.24 0.73
BERTp 0.19 0.34 0.24 0.32 0.61
BERTf 0.32 0.74 0.61 0.32 0.82

Human 0.66 0.71 0.74 0.58 0.75

Table 8: Spearman ⇢ scores on compositional tasks,
for our proposed unary map verb representation versus
state of the art sentence embedding methods.

two tasks. Table 7 contrasts the additive models
(top row), type-driven methods that use the Kro-
necker (second row) and Relational (third row) verb
representations, against the type-driven model that
uses skipgram representations (resp. full context
binary maps, full context unary maps, restricted
context unary maps).

While the skipgram binary map verb representa-
tions with full sentences as context perform slightly
better in a sentence context, they generally under-
perform the additive baseline and the non-skipgram
tensors. We argue that this is mainly due to the
choice of context: the full sentence doesn’t tell us
enough about the subjects and objects of the verb,
whereas the Relational model directly encodes this
information. Similarly to the verb similarity results,
the binary map representations show a very poor
performance, which we argue is due to data spar-
sity. Even though the binary map implicitly model
properties of arguments of the verbs, their represen-
tation is too sparse to effectively model anything.
Our proposed unary map model remedies both the
sparsity problem and the choice of context, and
outperforms all the other representations, save on
the ML2008 dataset. This model also improves the
state of the art in all the datasets.

4.2.2 Elliptical Phrase and SICK Datasets

The results in Tables 9 show that our proposed
verb unary map representations achieve competi-
tive results compared to the additive baseline, and
pre-trained BERT embeddings, on the ELLDIS and
ELLSIM tasks and on (a subset of) the SICK relat-
edness task. What is more, they clearly outperform
the analytic tensors and in ellipsis datasets; they
also improve the state of the art of ELLDIS, which

More results Including the SICK dataset, which contains longer & ‘natural’ sentences.

ELLDIS
ELLSIM
SICK-R
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Add Kron Rel eVo|s/s|o
(1) IS USE BERTp BERTf

0.31 0.30 0.37 0.56 0.34 0.27 0.36 0.65
0.67 0.52 0.65 0.76 0.80 0.68 0.67 0.79
0.71 0.58 0.44 0.70 0.74 0.76 0.70 0.76

Table 9: Spearman ⇢ scores on the ELLDIS (top), ELL-
SIM (middle), and SICK relatedness (bottom) tasks.

was 0.53, and provide equal results to the state of
the art of ELLSIM, which was 0.76 , both reported
in Wijnholds and Sadrzadeh (2019). However, they
are surpassed by fine-tuned BERT sentence em-
beddings and sentence encoders, that achieve the
highest. For SICK, to verify that the high perfor-
mance of our verb maps is not caused simply by
adding in the vectors for the remaining word of a
sentence, we did an ablation in which the rest of
the sentence was not considered. Using addition of
vectors, this gave a ⇢ of 0.61, and for the compo-
sitional verb matrices this gave 0.62 (cf. 0.71 and
0.70 in Table 9).

4.3 Comparison with Sentence Embeddings

We compare our model with the InferSent
encoder and the Universal Sentence Encoder,
and with ELMo and BERT encodings in Table 8.
Although our embeddings outperform Universal
Sentence Encoder on all tasks, on the ML2010
and KS2014 dataset InferSent performs higher,
possibly due to its high embedding dimensionality
(4096). For the BERT embeddings we observe
an interesting pattern: our proposed method
outperforms any pre-trained BERT model, but
after fine-tuning on NLI datasets, the BERT
models score the highest on all datasets but
KS2013. Although fully analysing the syntactic
awareness of BERT is beyond the scope of this
paper, it seems that both explicitly modelling
syntax in the embeddings as our method does, and
fine-tuning BERT embeddings are viable strategies.

5 Conclusion

We generalised the skipgram model (Mikolov et al.,
2013) to learn multilinear map representations for
words with functional types using the setting of
Combinatory Categorial Grammar. Our model re-
duces to the original skipgram for atomic types
such as nouns, and to the adjective skipgram model
of Maillard and Clark (2015), for functional types

of one argument. To overcome potential sparsity
issues we approximated higher arity maps with a
set of lower arity ones and showed that such ap-
proximations provide better results.

The model was implemented on transitive verbs,
learning binary and a set of approximated unary
representations. These were evaluated on verb sim-
ilarity and disambiguation and sentence similarity
tasks. The unary map approximations significantly
outperformed previous type-driven verb represen-
tations. They also outperformed sentence encoders
and pre-trained BERT embeddings. When moving
to datasets of longer sentences, e.g. sentences with
elliptical phrases and the SICK relatedness, some
sentence encoders and fine-tuned BERT represen-
tations were superior.

Our multilinear skipgram model paves the way
for a new generation of type-driven representa-
tions, in line with recent research highlighting ben-
efits of syntactic biases injected into representation
learning (Kuncoro et al., 2020). Furthermore, our
model is fast to train, guided by a linguistic cal-
culus (CCG), and produces syntax-aware sentence
embeddings. Performance could potentially be im-
proved by adding non-linearities to the model, as
in Socher et al. (2013) and by modelling complex
syntactic phenomena such as auxiliaries and nega-
tion.
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What we learn from this

Disambiguation Tensor-based composition models seem to be better at disambigua-
tion in context.

Similarity Simple addition of word vectors outperforms tensor-based models in the
case of sentence similarity.

Composition Models vs Encoders The same pattern persists when we compare with
sentence encoders, that can achieve higher results on sentence similarity but are still
stuck at verb disambiguation in context.

To resolve or not to resolve In almost all cases, models resolve ellipsis achieve higher
performance than models that don’t. For the case of tensor-based models the resolution
is handled by the syntactic front-end, whereas sentence encoders would require such a
front-end to be implemented still → we need grammar(/semantics)!

The Great Disclaimer It is intractable to try out all possible representation methods,
composition models, etc., and they do not easily scale up to larger evaluation datasets
where sentence length is not given in advance. Even on the SICK dataset, compromises
have to be made in order to evaluate these tensor representations.



Large-scale NLP Evaluation



Natural Language Inference

Entailment? Given a premise s1, and a hypothesis s2, decide whether the premise
Entails, Contradicts, or is Neutral with respect to the hypothesis.

Human Inferences Some examples from the SICK [Marelli et al., 2014] dataset:

Premise Hypothesis Label

A deer is jumping over a fence A deer isn’t jumping over a fence C
A player is running with the ball Two teams are competing in a football match N
An old man is sitting in a field A man is sitting in a field E

NLI Datasets

I Larger and more fuzzy: SNLI [Bowman et al., 2015],

I Multi-genre: MNLI [Williams et al., 2018],

I Multi-lingual: XNLI [Conneau et al., 2018],

I With explanations: e-SNLI [Camburu et al., 2018],

I etc...



BERT for NLI

Freeze! We can choose to fine-tune or to extract, by ‘freezing’ the BERT layers:

hated drawing this

: CONTRADICTION



Analyzing NLI Models

Generalization Models trained on one NLI dataset may not perform well on another
set [Talman and Chatzikyriakidis, 2019]:

Train Test Acc. Model

SNLI SNLI 90.4 BERT-base
SNLI MNLI 75.5 BERT-base
SNLI SICK 56.9 BERT-base

...
...

...
...

Specialized Reasoning Monotonicity Entailment Dataset [Yanaka et al., 2019]

Example:

notate each example in our dataset with linguistic
tags associated with monotonicity reasoning.

We measure the performance of state-of-the-art
NLI models on monotonicity reasoning and inves-
tigate their generalization ability in upward and
downward reasoning (Section 4). The results show
that all models trained with SNLI (Bowman et al.,
2015b) and MultiNLI (Williams et al., 2018) per-
form worse on downward inferences than on up-
ward inferences.

In addition, we analyzed the performance of
models trained with an automatically created
monotonicity dataset, HELP (Yanaka et al., 2019).
The analysis with monotonicity data augmentation
shows that models tend to perform better in the
same direction of monotonicity with the training
set, while they perform worse in the opposite di-
rection. This indicates that the accuracy on mono-
tonicity reasoning depends solely on the major-
ity direction in the training set, and models might
lack the ability to capture the structural relations
between monotonicity operators and their argu-
ments.

2 Monotonicity

As an example of a monotonicity inference, con-
sider the example with the determiner every in (3);
here the premise P entails the hypothesis H .

(3) P : Every [NP person #] [VP bought a movie ticket "]
H: Every young person bought a ticket

Every is downward entailing in the first argument
(NP) and upward entailing in the second argument
(VP), and thus the term person can be more spe-
cific by adding modifiers (person w young per-
son), replacing it with its hyponym (person w
spectator), or adding conjunction (person w per-
son and alien). On the other hand, the term buy a
ticket can be more general by removing modifiers
(bought a movie ticket v bought a ticket), replac-
ing it with its hypernym (bought a movie ticket
v bought a show ticket), or adding disjunction
(bought a movie ticket v bought or sold a movie
ticket). Table 1 shows determiners modeled as bi-
nary operators and their polarities with respect to
the first and second arguments.

There are various types of downward operators,
not limited to determiners (see Table 2). As shown
in (4), if a propositional object is embedded in a
downward monotonic context (e.g., when), the po-
larity of words over its scope can be reversed.

Determiners First argument Second argument
every, each, all downward upward
some, a, a few, many,

upward upward
several, proper noun
any, no, few, at most X,

downward downward
fewer than X, less than X
the, both, most, this, that non-monotone upward
exactly non-monotone non-monotone

Table 1: Determiners and their polarities.

Category Examples
determiners every, all, any, few, no
negation not, n’t, never
verbs deny, prohibit, avoid
nouns absence of, lack of, prohibition
adverbs scarcely, hardly, rarely, seldom
prepositions without, except, but
conditionals if, when, in case that, provided that, unless

Table 2: Examples of downward operators.

(4) P : When [every [NP young person "] [VP bought a
ticket #]], [that shop was open]

H: When [every [NP person] [VP bought a movie
ticket]], [that shop was open]

Thus, the polarity (" and #), where the replace-
ment with more general (specific) phrases licenses
entailment, needs to be determined by the inter-
action of monotonicity properties and syntactic
structures; polarity of each constituent is calcu-
lated based on a monotonicity operator of func-
tional expressions (e.g., every, when) and their
function-term relations.

3 Dataset

3.1 Human-oriented dataset

To create monotonicity inference problems, we
should satisfy three requirements: (a) detect the
monotonicity operators and their arguments; (b)
based on the syntactic structure, induce the polar-
ity of the argument positions; and (c) replace the
phrase in the argument position with a more gen-
eral or specific phrase in natural and various ways
(e.g., by using lexical knowledge or logical con-
nectives). For (a) and (b), we first conduct polar-
ity computation on a syntactic structure for each
sentence, and then select premises involving up-
ward/downward expressions.

For (c), we use crowdsourcing to narrow or
broaden the arguments. The motivation for using
crowdsourcing is to collect naturally alike mono-
tonicity inference problems that include various
expressions. One problem here is that it is un-

4. disjunction (254 examples): inference prob-
lems that include the phrase replacement by
adding disjunction (or) to the hypothesis

5. conditionals (149 examples): inference prob-
lems that include conditionals (e.g., if, when,
unless) in the hypothesis 4

6. negative polarity items (NPIs) (338 exam-
ples): inference problems that include NPIs
(e.g., any, ever, at all, anything, anyone, any-
more, anyhow, anywhere) in the hypothesis

4 Results and Discussion

4.1 Baselines
To test the difficulty of our dataset, we checked
the majority class label and the accuracies of five
state-of-the-art NLI models adopting different ap-
proaches: BiMPM (Bilateral Multi-Perspective
Matching Model; Wang et al., 2017), ESIM (En-
hanced Sequential Inference Model; Chen et al.,
2017), Decomposable Attention Model (Parikh
et al., 2016), KIM (Knowledge-based Inference
Model; Chen et al., 2018), and BERT (Bidirec-
tional Encoder Representations from Transform-
ers model; Devlin et al., 2019). Regarding BERT,
we checked the performance of a model pretrained
on Wikipedia and BookCorpus for language mod-
eling and trained with SNLI and MultiNLI. For
other models, we checked the performance trained
with SNLI. In agreement with our dataset, we re-
garded the prediction label contradiction as non-
entailment.

Table 6 shows that the accuracies of all models
were better on upward inferences, in accordance
with the reported results of the GLUE leader-
board. The overall accuracy of each model was
low. In particular, all models underperformed the
majority baseline on downward inferences, despite
some models having rich lexical knowledge from
a knowledge base (KIM) or pretraining (BERT).
This indicates that downward inferences are diffi-
cult to perform even with the expansion of lexical
knowledge. In addition, it is interesting to see that
if a model performed better on upward inferences,
it performed worse on downward inferences. We
will investigate these results in detail below.

4When-clauses can have temporal and non-temporal in-
terpretations (Moens and Steedman, 1988). We assign the
conditional tag to those cases where when is interchangeable
with if, thus excluding those cases where when-clauses have
temporal episodic interpretation (e.g., When she came back
from the trip, she bought a gift).

Model Train Upward Downward Non All
Majority 65.5 63.3 99.3 50.4

BiMPM SNLI 53.5 57.6 27.4 54.6
ESIM SNLI 71.1 45.2 41.8 53.8
DeComp SNLI 66.1 42.1 64.4 51.4
KIM SNLI 78.8 30.3 53.1 48.0
BERT SNLI 50.1 46.8 7.5 45.8
BERT MNLI 82.7 22.8 52.7 44.7

Table 6: Accuracies (%) for different models and train-
ing datasets.

Training set Upward Downward Non All
MNLI 82.7 22.8 52.7 44.7
MNLI–Hyp 34.3 18.3 31.5 24.4
MNLI+HELP 76.0 70.3 59.9 71.6
MNLI+HELP–Hyp 61.3 30.5 34.9 41.1

Table 7: Evaluation results on types of monotonicity
reasoning. –Hyp: Hypothesis-only model.

4.2 Data augmentation for analysis

To explore whether the performance of models on
monotonicity reasoning depends on the training
set or the model themselves, we conducted fur-
ther analysis performed by data augmentation with
the automatically generated monotonicity dataset
HELP (Yanaka et al., 2019). HELP contains 36K
monotonicity inference examples (7,784 upward
examples, 21,192 downward examples, and 1,105
non-monotone examples). The size of the HELP
word vocabulary is 15K, and the overlap ratio of
vocabulary between HELP and MED is 15.2%.

We trained BERT on MultiNLI only and on
MultiNLI augmented with HELP, and compared
their performance. Following Poliak et al. (2018),
we also checked the performance of a hypothesis-
only model trained with each training set to test
whether our test set contains undesired biases.

4.2.1 Effects of data augmentation
Table 7 shows that the performance of BERT
with the hypothesis-only training set dropped
around 10-40% as compared with the one with the
premise-hypothesis training set, even if we use the
data augmentation technique. This indicates that
the MED test set does not allow models to pre-
dict from hypotheses alone. Data augmentation
by HELP improved the overall accuracy to 71.6%,
but there is still room for improvement. In addi-
tion, while adding HELP increased the accuracy
on downward inferences, it slightly decreased ac-
curacy on upward inferences. The size of down-
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monotonicity inference examples (7,784 upward
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only model trained with each training set to test
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Table 7 shows that the performance of BERT
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around 10-40% as compared with the one with the
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Analyzing/Probing Lots of work into investigating NLI models (and contextualized
representations) [Naik et al., 2018, McCoy et al., 2019, Richardson et al., 2020, Tenney
et al., 2019]



Reasoning in Dutch

SICK-NL [Wijnholds and Moortgat, 2021] semi-automatically translated the SICK
dataset into Dutch.

Dutch vs English

SICK SICK-NL

No. of tokens 189783 176509
No. of unique tokens 2328 2870
Avg. sentence length 9.64 8.97
Avg. word overlap 66.91% 58.99%

Comparing BERTs A comparison shows that the Dutch incarnation is harder to solve:

SICK SICK-NL

BERT 87.34 BERTje 83.94
mBERT 87.02 mBERT 84.53
RoBERTa 90.11 RobBERT 82.02



Error Analysis

1477

BERT Prediction EN-NL
C N E rec.

G
ol

d C 549 62 16 88%
N 35 2341 147 93%
E 3 143 1035 88%
pr. 94% 92% 86%

Prediction EN
C N E rec.
46 27 12 54%
37 147 83 55%
3 53 167 75%

53% 65% 64%

Prediction NL
C N E rec.
22 52 11 26%
32 116 119 43%
3 165 55 25%

39% 35% 30%
mBERT

G
ol

d C 553 69 10 88%
N 32 2344 106 94%
E 3 160 1015 86%
pr. 94% 91% 90%

24 47 9 30%
9 210 89 68%
0 103 123 54%

73% 58% 56%

42 31 7 52%
71 93 144 30%
15 111 100 44%

33% 40% 40%
RoBERTa

G
ol

d C 563 68 4 89%
N 25 2301 82 96%
E 1 108 995 90%
pr. 96% 93% 92%

27 46 4 35%
6 279 97 73%
2 42 256 85%

77% 76% 72%

35 28 14 45%
79 96 207 25%
15 246 39 13%

27% 26% 15%

Table 5: Confusion matrices for English vs Dutch language models, finetuned. Top: BERT vs BERTje. The
models disagree in 13.3% of cases. Middle: Multilingual BERT. The model disagrees in 14.3% of cases). Bottom:
Roberta vs RobBERT. The models (disagree in 18.3% of cases).

5 Stress Testing

One of the potential sources of error could have
been the passive form translation of a verb.
Such constructions, combined with a prepositional
phrase, form an interesting testbed for Dutch as
they allow the prepositional phrase to be moved in
front of the verb in a sentence without changing the
meaning. For example, “Een vrouw is aan het wake-
boarden op een meer” (“A woman is wakeboarding
on a lake”), may in Dutch be used interchangeably
with “Een vrouw is op een meer aan het wakeboar-
den”). We select all (87) sentences in SICK-NL
that contain both the ‘aan het’ construction and a
prepositional phrase, and generate their permuta-
tions. Then, we replace all (225) inference pairs
with these sentences such that they now contain a
sentence with different word order but the exact
same meaning and therefore the inference label is
preserved. We then verify how the model’s predic-
tions do on those inference pairs that were in the
test set (116). Additionally, we check whether the
models are able to interchange sentences and their
rewritten equivalent (i.e. classify as Entailment).

As a second test, we investigate the role of the
simple present versus the present continuous. We
take all the (383) cases of present continuous in
the Dutch dataset and replace them by a simple
present equivalent, leading to 1137 pairs, out of
which 576 occur in the test data. For example, we
turn the sentence “De man is aan het zwemmen”
into the simple form “De man zwemt”. We then

repeat the same procedure as above, asking how
many inference predictions change as a result of
this form change, and whether the forms can be
used interchangeably for the models.

present cont. ! present simple
Before After !  

BERT 84.55 86.63 93.21 92.43
mBERT 86.11 84.90 94.26 94.52
RobBERT 82.81 81.94 86.16 84.33

prep. phrase order switch

BERT 81.03 78.45 85.06 85.06
mBERT 87.93 85.34 85.06 80.46
RobBERT 76.72 75.86 72.41 73.56

Table 6: Stress test accuracy. Left: accuracy before and
after rewriting. Right: inference between rewritings.

The results in Table 6 indicate that the inter-
change between present continuous and simple
present forms does not make much of a difference
to the models’ performance, and interchangeabil-
ity is high except for RobBERT that scores under
90%. However, switching the order of preposi-
tional phrase and verb has a much stronger effect
with all models consistently scoring lower on the
relevant part of the test set, and mainly the mod-
els being particularly poor at interchanging these
sentences that are semantically equivalent.

Model mistakes Where the models disagree between the English/Dutch premise-
hypothesis pairs, the Dutch models have a higher tendency to classify Entailment as
Neutral, and Neutral as Entailment.



Patterns in Dutch

Prepositional phrase the attachment of a PP in Dutch may be interchangedly placed
before or after the verb:

A woman is wakeboarding on a lake → Een vrouw is aan het wakeboarden op een meer

A woman is wakeboarding on a lake → Een vrouw is op een meer aan het wakeboarden

Simple present vs present continuous

The man is swimming → De man is aan het zwemmen

The man is swimming → De man zwemt

Stress Testing

present cont. → present simple
Before After → ←

BERT 84.55 86.63 93.21 92.43
mBERT 86.11 84.90 94.26 94.52
RobBERT 82.81 81.94 86.16 84.33

prep. phrase order switch

BERT 81.03 78.45 85.06 85.06
mBERT 87.93 85.34 85.06 80.46
RobBERT 76.72 75.86 72.41 73.56



Logical Reasoning on Dutch

Return of the Lambdas [Abzianidze and Kogkalidis, 2021] implement a system that
uses neurally learnt lambda terms for tackling the SICK-NL dataset:

Neural Proof Nets

Syntactic
term

Simplified
semantic term

Fixed
semantic term

LLF

Simplifying types & pos tags
(many-to-one mapping)

Fixing analysis:
use pos tags & lemmas

Type-raising
quantified NPs

Figure 3: A procedure of obtaining LLFs from the syntactic terms of the parsers.

{n, np, sx, pp, pr} as detailed in §2.3. We translate syntactic terms into simple semantic terms using
a many-to-one map from syntactic atoms to simplified types, as depicted in Table 2. This serves two
functions: it first collates the (quite large) set of syntactic primitives to a more manageable size, but
also casts syntactic atoms that hide their semantic frames into explicit functions.

Syntactic Atoms (description & sign) LLF Types

Declarative sentence (verb at the 2nd position) smain sdcl

Subordinate clause (verb final) ssub ssub

Pronoun vnw np

Preposition vz pr

Numeral tw np

aan het-infinitive group ahi np(sng)

Verb ww np(sb)

Passive/perfect participle part np(spt)

te-infinitive group ti
np(sto)

om te-infinitive-group oti

Adjectival Phrase ap
np(sadj)

Adjective adj

Table 2: Mapping from typelogical atoms to LLF types.

Syntactic constants for lexical entries are translated to semantic constants that respect the trans-
lation of their type signature. Example (5-a) shows the simple semantic term resulting from casting
each of the syntactically flat atoms ti, part and ww to the function type vp := np(s).4

Fixing analyses Adjustment and correction of simple semantic terms is the most elaborate part
of the conversion procedure. Since there is no clear cut between adjustments and corrections due
to the differences in two styles of analysis motivated from top-down and bottom-up approaches, we
will not distinguish them and call it fixing. During term fixing, pos tags of the lexical entries are
used in addition to type information. Lexical terms are replaced with their lemmas (formatted in
boldface). Below we illustrate representative instances of the term fixes for Dutch syntactic terms.5

Moving a determiner in a term structure above noun modifiers is the most applied rule. The
instance of the rule application is shown in Example (5-b). Other fixing rules related to NPs are
the rules that change the type of a verb or a preposition term that takes an argument of type n.
Example (5-c) shows the changes in the types of “zijn” and “snijden” and the insertion of explicit
quantifiers for existence and plurality for the bare NPs “hout” and “mannen” respectively.

4. The simplification step also involves mapping the Alpino-style and Universal (Petrov et al. 2012) pos tags (coming
from Alpino and spaCy, respectively, see §4.2) to the Penn Treebank-style. The latter is the tagset expected by
an existing reasoning component (see §3.3).

5. Some of these fixes are results of combinations of the already existing fixing rules from Abzianidze (2015b) specific
to CCG derivation trees and the fixing rules specific to the structures of the Dutch syntactic terms.

LangPro

Example

Sometimes adjectives that act like nouns are analysed as predicative adjectives of type np(sadj),
like in (sim) of (5-d). The type of such nominal adjectives are set to n and the type of related lexical
terms are changed accordingly. Example (5-d) also shows how the predicative PP “op een berg” is
changed from an adjunct phrase to a complement of the copula “zijn”.

(5) a. (nld) om te vissen gebruikt
(syn) omti(part(part)) (teww(ti) vissenww) gebruiktpart

(sim) omvp(vp(vp)) (tevp(vp) vissenvp) gebruiktvp

(fix) omvp(vp(vp)) (tevp(vp) vissenvp) gebruikenvp

b. (nld) een grote bruine hond

(sim) grotenp(np)
(
bruinenp(np) (eenn(np) hondn)

)

(fix) eenn(np) (grootn(n) (bruinn(n) hondn))

c. (nld) mannen zijn hout aan het snijden

(sim) zijnvp(n(s))
(
aan hetvp(vp)

(
snijdenn(vp) houtn

))
mannenn

(fix) zijnvp(np(s)) (aan hetvp(vp) (snijdennp(vp) (eenn(np) houtn))) (sn(np) mann)
(llf) sn(vp(s)) man (zijn (aan het (λx. eenn(vp(s)) hout (λy. snijden ynp xnp))))

d. (nld) een man in het blauw is op een berg

(sim) opnp(s(s)) (eenn(np) bergn)
(
isvp

(
innp(np(np))

(
hetvp(np) blauwvp

)
(eenn(np) mann)

))

(fix) zijnpp(vp) (opnp(pp) (eenn(np) bergn)) (eenn(np) ((innp(n(n)) (hetn(np) blauwn)) mann))

(llf)
hetn(vp(s)) blauw (λx.eenn(vp(s)) (in xnp man)

(λy. eenn(vp(s)) bergn (λz. zijn (op znp) ynp)) )

e. (nld) een rode jas en kaki broek

(sim) enα(α(α))
(
λx. rodenp(np) (xn(np) jasn)

) (
λy. kakinp(np) (yn(np) broekn)

)
eenn(np)

(fix) ennp(np(np)) (eenn(np) (roodn(n) jasn)) (eenn(np) (kakin(n) broekn))

Elliptical coordination constructions are modeled with syntactic terms containing λ-abstractions,
as shown in (sim) of Example (5-e). We apply a non-linear rewriting rule to such constructions that
distributes the argument over the coordinated function terms: in the example, “een” is distributed
over “rode jas” and “kaki broek”. After the argument distribution, β-reductions are applied and the
determiners are moved at the top level of NPs, as done in Example (5-b).

Type-raising NPs The final step in the conversion is to obtain LLFs from fixed terms. This
is done by type-raising NPs with determiners/quantifiers. This procedure follows the algorithm
described in Abzianidze (2016), which is already implemented in the the LangPro theorem prover.
Examples of LLFs with type-raised NPs are given for the sentences (5-c) and (5-d). All lexical terms
retain their types except the determiners; their n(np) type is replaced with n(vp(s)).

3.3 Natural Language Reasoning

Reasoning over the Dutch LLF is handled by LangPro (Abzianidze 2017), a Natural Tableau-based
automated theorem prover. The prover, in its original English implementation, uses a CCG parser
to parse and tag input sentences, and builds two tableaux (one for entailment, and one for con-
tradiction6) while using the Princeton WordNet (Miller 1995) as a lexical knowledge base (KB).
LangPro has been applied to a few NLI benchmarks, and its results rank high among logic-based
NLI systems (Abzianidze 2016). In order to enable the acquisition of novel lexical knowledge from

6. To prove the contradiction relation between a premise and a hypothesis, a tableau starts with the both premise
and hypothesis marked with the true sign because a counterexample for the contradiction relation is when both
of the sentences can be true.

Results

Parser Sentences Parsed Problems Covered

Neural Proof Nets 5 812 (95,9%) 9 264 (94,1%)

Alpino 5 947 (98,1%) 9 611 (97,7%)

Table 3: Sentences parsed and problems covered with each parser.

to the LangPro theorem prover – if a problem is missing a term for either premise or hypothesis,
the prover’s prediction defaults to the neutral label.

We obtain an accuracy score on the test set (percentage of problems correctly classified) from each
parser & tagger combination, as well as five ensemble models. Each ensemble aggregates the votes
of equally weighted models, prioritising non-neutral over neutral votes, and defaulting to neutral in
case of conflict (e.g. entailment vs contradiction). We produce two ensembles over parsers, two over
taggers, and one over all four taggers and parser combinations.

Next, we train each of the core model using abduction on the union of the training and trial
portions of the dataset. We use the trial set in abductive learning since the theorem prover has
no proper set of hyperparameters that can be tuned in the development phase. For the abductive
learning we use the settings of Abzianidze (2020). Post-training, models are organised in ensemble
pairs as before, without cross-model spilling of learned knowledge.

To quantitatively assess our models’ performance, we compare against established pretrained
language models, fine-tuned as three-way sequence classifiers (a sequence being the concatenation of
the premise and hypothesis sentences, as is standard practice). Following Wijnholds and Moortgat
(2021), we use BERTje (de Vries et al. 2019), RobBERT (Delobelle et al. 2020) and mBERT (Devlin
et al. 2019), but perform model selection on the basis of trial set accuracy, and average scores from
five training instances.

4.3 Results

Table 4a presents the results for all parser & tagger combinations and ensembles, with and without
abduction. Comparing individual components, we note that models perform better with (i) pos
tags and lemmas coming from spaCy rather than Alpino, and (ii) parse structures coming from the
Alpino pipeline rather than NPN. When it comes to abduction, trained models perform consistently
better across the board, raising individual model performance by 1.38–1.83%. In line with previ-
ous work (Abzianidze 2015a, Mart́ınez-Gómez et al. 2016), aggregating proofs from various model
combinations substantially improves results. Our best performing model is the ensemble of four
theorem provers using all cross combinations of parsers & taggers, where each of the prover has been

Parser

Tagger npn alpino Σ

Alpino 74.65 -1.50 75.87 -1.83 76.38 -1.75

spaCy 76.66 -1.38 77.61 -1.72 78.38 -1.58

Σ 77.04 -1.40 77.98 -1.71 78.83 -1.62

(a) Accuracy of LangPro when using each parser & tag-
ger combination, including ensembles (Σ) over parser,
tagger or both. Right subcolumns report difference when
no training with abduction is used.

Model Accuracy Hybrid

LangProΣ2 78.8 –

BERTje 82.0 81.8

RobBERT 81.7 82.6

mBERT 79.9 80.6

(b) Performance of LangProΣ2 compared to
fine-tuned neural baselines. Right column re-
ports performance when LangPro Σ2 proofs
override neural predictions.

Table 4: Internal and external model comparisons on the test set of SICK-NL, with 56.4% of neutral-
class baseline. The scores are percentage of correctly classified problems.



Evaluating syntactic patterns



Probing Discontinuity

Goal [Kogkalidis and Wijnholds, 2022] studies BERT embeddings to see the extent
to which they contain lexical knowledge about control verbs, and the extent to which
they are invariant under word order permutations in the case of verb raising.

The plan

1. Generate test data for verb-subject dependencies in discontinous settings,

2. Generate in a controlled way and generate samples that are naturalistic (i.e.
humans can understand them),

3. Training a probing model to recognise verb-subject dependencies,

4. Analyzing the results

Refinement We refine the generation using the ACG format seen on Wednesday,
which allows us to carry out analysis in much more detail.

DIY https://github.com/gijswijnholds/discontinuous-probing

https://github.com/gijswijnholds/discontinuous-probing
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Abstract

In this paper, we set out to quantify the syntac-
tic capacity of BERT in the evaluation regime
of non-context free patterns, as occurring in
Dutch. We devise a test suite based on a mildly
context-sensitive formalism, from which we
derive grammars that capture the linguistic phe-
nomena of control verb nesting and verb raising.
The grammars, paired with a small lexicon, pro-
vide us with a large collection of naturalistic
utterances, annotated with verb-subject pair-
ings, that serve as the evaluation test bed for
an attention-based span selection probe. Our
results, backed by extensive analysis, suggest
that the models investigated fail in the implicit
acquisition of the dependencies examined.

1 Introduction
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theory has become a prominent theme in the litera-
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2019) and its many variants, largely due to their
unanticipated performance. Standard practice in-
volves attaching BERT to a shallow neural model of
low parametric complexity, and training the latter
at detecting various linguistic patterns of interest,
revealing in the process the amount to which they
are encoded within BERT’s representations. The
consensus points to BERT-like models having some
capacity for syntactic understanding (Rogers et al.,
2020). Their contextualized representations encode
structural hierarchies (Lin et al., 2019) that can be
projected into parse structures, using linear (He-
witt and Manning, 2019) or hyperbolic transforma-
tions (Chen et al., 2021), from which one can even
obtain an accurate reconstruction of the underlying
constituency tree (Vilares et al., 2020).

Despite their broadening scope, a latent bias per-
sists in the insights provided by the probing liter-
ature, due to its focus being, by default, on En-

⇤ Equal contribution.

glish. English, albeit boasting a rich collection of
evaluation resources, is characterized by a simple
grammar with relatively few complications over
the syntactic and morphological axes. Specifically
when it comes to syntax, English lies in close prox-
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We employ a mildly context-sensitive grammar for-
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tersect when drawn on a plane: Figure 1 portrays an
adaptation of the example of Bresnan et al. (1982).

... dat Jan Marie de kinderen ziet leren fietsen
... that Jan Marie the children see teach cycle

‘...that John sees Mary teach the kids to cycle’

Figure 1: Illustration of crossing dependencies in Dutch.

To that end, we first identify two well-studied con-
structions in Dutch that commonly involve cross-

Example

➤ The understood subject of a verb depends on choice of control verb 

➤ Adding causative verbs may flip the understood subject again

Sentences

1 Sentence examples

(a) [de student] belooft de docent [te vertrekken]
(b) de student vraagt [de docent] [te vertrekken]

(EN) the student promises/asks the teacher to leave

(a) [de student] [vraagt] [de docent] [de opdrachten] [te maken]

(a) de docent ziet [de student] [de hond] [de eend] de oefeningen [helpen] [leren] [eten]

(EN) the teacher sees [the student] [help] [the dog] [teach] [the duck] [to eat] the exercises

(a) de student belooft de docent de opdracht te maken
(b) de student vraagt de docent de opdracht te maken

(c) de student die de docent belooft om de opdracht te maken
(d) de student belooft de docent de opdracht te maken
(e) de docent belooft de student de opdracht te maken

(f ) paper that Bob rejected without reading p (immediately)
(g) *window that Bob sleeps without closing

(h) *student die de docent belooft zonder te begrijpen de opdracht te maken
(i) student die de docent belooft de opdracht zonder te begrijpen te maken
(j ) student die de docent belooft de opdracht te maken zonder te begrijpen
(k) *student die de docent belooft zonder te begrijpen te maken de opdracht

1

➤ BERTje (de Vries et al. 2019) and RobBERT (Delobelle et al. 2020)

N1 N2 N3

V1 x

V2 x

N1        V1          N2               N3          V2

BERT (frozen)

Global Attention (Span Aggregation)

Sparse Attention ⊙
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Designing the Probe

➤ Parse DAGs extracted from Lassy-Small, a gold standard corpus of written Dutch 
(Van Noord 2013) 

➤ These contain both continuous and discontinuous verb-subject dependencies
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1. We use a mildly context-sensitive grammar formalism, MCFG, to 
generate two novel annotated datasets. 
These datasets model verb-subject dependencies in a  discontinuous 
setting. 

2. We pretrain a probe on top of frozen Dutch BERT models, training it to 
recognize verb-subject dependencies in general. 

3. We evaluate the probe on our datasets, and perform a detailed inspection 
of the experimental results.

Generating Test Data: Verb Raising

Example 

➤ Verb-noun dependencies are labelled during generation, allowing us to percolate labels 
down through the MCFG rules 

➤ Per abstract parse tree, we sample and generate a fixed number of sentences

S(xyzu1u2)  � NP(x) TV(y) NP(z) VC(u1, u2) (A1)

S(xyzuw1vw2)  � NP(x) TV(y) NP(z) NP(u) CV(v) VC(w1, w2) (A2)

VC(x, y)  � TE(x) INFiv(y) (A3)

VC(zx, y)  � TE(x) INFtv(y) NP(z) (A4)

VC(xy, zu0u1)  � NP(x) TE(y) INFc(z) VC(u0, u1) (A5)

VC(xyu, zv1v2)  � NP(x) TE(y) INFc(z) CV(u) VC(v1, v2) (A6)

S(xyzvu1u2)  � NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Am
1 )

S(vyxzu1u2)  � NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Ai
1)

...
(a) 2-MCFG for control verbs.

S(xy1y2)  � PREF(x) SUB(y1, y2) (B1)

SUB(x, y)  � NP(x) INFiv(y) (B2)

SUB(xy, z)  � NP(x) NP(y) INFtv(z) (B3)

SUB(xz, yu)  � NP(x) RV(y) SUB(z, u) (B4)

(b) 2-MCFG for verb raising.

Figure 2: 2-MCFGs capturing the phenomena of Section 3.1.

3.2 Data generation

For our data generation needs, we design a custom
implementation of an MCFG enriched with two
added functionalities. First, we define two sets
Nv, Nn ⇢ N that specify which non-terminals
correspond to verb- and noun phrases respectively.
Every occurrence of a marked non-terminal indi-
cates a unique phrase in the final yield, which we
can trace by traversing the derivation tree. This,
in turn, gives us the possibility of assigning one
or more labels to the constituent substrings that
make up a sentence, according to which phrase(s)
they were part of, even in the case of discontinu-
ous and/or overlapping substrings. Additionally,
we decorate MCFG rules with subject inheritance
schemes. In the simplest case, a scheme may di-
rectly specify the subject noun of a verb, if the non-
terminals of both occur on the same rule, i.e. they
inhabit the same depth of the generation tree. Alter-
natively, when the two occur at different depths, a
scheme may defer the decision by propagating verb
indices down through non-nominal constituents
that will contain the matching subject, but at an
arbitrary nesting depth (see Figure 3 for an exam-
ple). Lexical constants for primitive categories are
populated by means of an automatically compiled
but manually verified lexicon.

3.3 Grammars

We use the above framework to instantiate distinct
grammars for both syntactic phenomena of interest.
Note that the grammars are not purposed for the
construction of exhaustive or accurate analyses of
the phrase structures considered, but rather for the
controlled generation and annotation of suitable
samples.

Control Verb grammar Our first grammar,
given in Figure 2a, models control verb nesting.
The grammar accounts for the mobility of verbal
complements by encoding them as non-terminals
of multiplicity 2, making the grammar a 2-MCFG.
We have two constructors for sentences that com-
bine two noun phrases and a transitive verb with a
verbal complement (A1), optionally under the con-
text of a causative verb and its direct object (A2). In
the base case, verbal complements are constructed
with te and either an intransitive infinitive (A3) or
a transitive infinitive and its object (A4). In the
inductive case, a verbal complement can contain
a control verb in infinitival form together with a
noun phrase and another verbal complement, either
alone or with a causative (A5 and A6). To increase
the variance of generated samples, we also con-
sider two variations for each of the first two rules
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We have two constructors for sentences that com-
bine two noun phrases and a transitive verb with a
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General results 

Specific results

➤ Tree depth impacts accuracy, 
despite training on 
sentences, not trees 

➤ Specific rules may introduce 
complexity, that the model 
can’t deal with

# Nouns Tree Depth Rule
Model 2 3 4 5 2 3 4 AX

1 AX
2 A3 A4 A5 A6

BERTje 81.1 58.8 50.5 42.9 61.8 52.7 46.8 100 67 43.1 34.6 36.1 27.1

RobBERT 73 52.8 42.4 35.9 58.3 47.2 38.8 93.6 58.1 41.2 19.6 21 17

(a) Control Verb Grammar
# Nouns Tree Depth Rule

Model 2 3 4 5 2 3 4 5 6 B2 B3 B4

BERTje 75.6 52.4 33.5 25.5 92.2 66.4 40.5 29 23 53.4 53.8 36.7

RobBERT 46.3 37.2 24.5 11.4 65.6 36.9 33.6 19.4 12.6 89.1 24.3 12.9

(b) Verb Raising Grammar

Table 1: Seed-averaged accuracy scores for the two grammars of Section 3.3, grouped by various parameters. The
X superscript denotes inclusion and aggregation of the adverbial modifier variants for the corresponding rules.

of Augustinus (2015): we gather 9 subject- and
33 object-control verbs, 2 causatives and 7 raising
verbs. A comprehensive set of around 10 000 gen-
dered nouns (the ones that have de as their article)
is finally obtained from the Algemeen Nederlands
Woordenboek.4 In the verb raising grammar, we
trigger subordination by prefixing generated ex-
pressions with the string Iemand ziet (‘somebody
sees’).

From each generated abstract tree, we obtain 10
syntactically identical sentences that vary only in
their meaning by performing controlled sampling
over the lexicon; the very large product space of
constants guarantees sample uniqueness. This pa-
rameterization means we can inspect and group
samples on the basis of either their surface form
or their underlying tree, a property that will come
when analyzing model performance. To ensure nat-
urality and consistency in the model’s input, we
capitalize and punctuate generated sentences in a
final post-processing step.

4.2 Results

The trained probes are tested on our generated data,
yielding a prediction for every verb occurrence. For
each model, we report the seed-averaged accuracy
on each experiment in Table 2: test performance
is substantially lower than in the validation bench-
marks.

Model Lassy Control Raising

BERTje 97.6 48 43.1

RobBERT 92.5 40.6 29.2

Table 2: Model accuracy on the validation data (Lassy)
versus the test data (Control, Raising).

4https://anw.ivdnt.org

To facilitate analysis, we group predictions ac-
cording to their context, namely (i) number of noun
phrases in the sentence (classification targets), (ii)
maximal depth of the underlying abstract syntax
tree and (iii) production rule, and aggregate them
into accuracy scores, presented in Table 1. This
breakdown suggests that model performance re-
mains passable for the easier portion of the dataset,
but degrades quickly as the difficulty of the task
increases; models have a harder time associating a
verb to its subject as sentences get longer and more
complicated. The over-representation of harder-
samples due to the dominance of deeper abstract
syntax trees then serves to explain the striking per-
formance decline.

Control Verbs Focusing on the control gram-
mar first, we remark that both models consistently
score above the random baseline (i.e. 1 divided
by the number of classification targets), seemingly
indicating that some notion of semantic compre-
hension perseveres in the presence of control verb
nestings. Grouping scores by rule is revealing: the
main clause subject is (almost) always correctly de-
tected, regardless of nestedness of the co-occurring
complement and unperturbed by the presence of
word-order variations due to modifiers (AX

1 ). Ver-
bal complements and causatives, on the other hand,
are more often than not incorrectly analyzed, even
in the simplest cases of a bare infinitive in isola-
tion (A3), or a causative occurring at the topmost
branch of the tree (AX

2 ).
To procure an explanation for this discrepancy,

we start by measuring accuracy in verbs occurring
under subject- and object control scopes separately.
The remarkably low results hint that models strug-
gle with both kinds of control, while indicating
the presence of an implicit bias slightly favouring
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capitalize and punctuate generated sentences in a
final post-processing step.

4.2 Results

The trained probes are tested on our generated data,
yielding a prediction for every verb occurrence. For
each model, we report the seed-averaged accuracy
on each experiment in Table 2: test performance
is substantially lower than in the validation bench-
marks.

Model Lassy Control Raising

BERTje 97.6 48 43.1

RobBERT 92.5 40.6 29.2

Table 2: Model accuracy on the validation data (Lassy)
versus the test data (Control, Raising).

4https://anw.ivdnt.org

To facilitate analysis, we group predictions ac-
cording to their context, namely (i) number of noun
phrases in the sentence (classification targets), (ii)
maximal depth of the underlying abstract syntax
tree and (iii) production rule, and aggregate them
into accuracy scores, presented in Table 1. This
breakdown suggests that model performance re-
mains passable for the easier portion of the dataset,
but degrades quickly as the difficulty of the task
increases; models have a harder time associating a
verb to its subject as sentences get longer and more
complicated. The over-representation of harder-
samples due to the dominance of deeper abstract
syntax trees then serves to explain the striking per-
formance decline.

Control Verbs Focusing on the control gram-
mar first, we remark that both models consistently
score above the random baseline (i.e. 1 divided
by the number of classification targets), seemingly
indicating that some notion of semantic compre-
hension perseveres in the presence of control verb
nestings. Grouping scores by rule is revealing: the
main clause subject is (almost) always correctly de-
tected, regardless of nestedness of the co-occurring
complement and unperturbed by the presence of
word-order variations due to modifiers (AX

1 ). Ver-
bal complements and causatives, on the other hand,
are more often than not incorrectly analyzed, even
in the simplest cases of a bare infinitive in isola-
tion (A3), or a causative occurring at the topmost
branch of the tree (AX

2 ).
To procure an explanation for this discrepancy,

we start by measuring accuracy in verbs occurring
under subject- and object control scopes separately.
The remarkably low results hint that models strug-
gle with both kinds of control, while indicating
the presence of an implicit bias slightly favouring

# Nouns Tree Depth Rule
Model 2 3 4 5 2 3 4 AX

1 AX
2 A3 A4 A5 A6

BERTje 81.1 58.8 50.5 42.9 61.8 52.7 46.8 100 67 43.1 34.6 36.1 27.1

RobBERT 73 52.8 42.4 35.9 58.3 47.2 38.8 93.6 58.1 41.2 19.6 21 17

(a) Control Verb Grammar
# Nouns Tree Depth Rule

Model 2 3 4 5 2 3 4 5 6 B2 B3 B4
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RobBERT 46.3 37.2 24.5 11.4 65.6 36.9 33.6 19.4 12.6 89.1 24.3 12.9

(b) Verb Raising Grammar

Table 1: Seed-averaged accuracy scores for the two grammars of Section 3.3, grouped by various parameters. The
X superscript denotes inclusion and aggregation of the adverbial modifier variants for the corresponding rules.

of Augustinus (2015): we gather 9 subject- and
33 object-control verbs, 2 causatives and 7 raising
verbs. A comprehensive set of around 10 000 gen-
dered nouns (the ones that have de as their article)
is finally obtained from the Algemeen Nederlands
Woordenboek.4 In the verb raising grammar, we
trigger subordination by prefixing generated ex-
pressions with the string Iemand ziet (‘somebody
sees’).

From each generated abstract tree, we obtain 10
syntactically identical sentences that vary only in
their meaning by performing controlled sampling
over the lexicon; the very large product space of
constants guarantees sample uniqueness. This pa-
rameterization means we can inspect and group
samples on the basis of either their surface form
or their underlying tree, a property that will come
when analyzing model performance. To ensure nat-
urality and consistency in the model’s input, we
capitalize and punctuate generated sentences in a
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into accuracy scores, presented in Table 1. This
breakdown suggests that model performance re-
mains passable for the easier portion of the dataset,
but degrades quickly as the difficulty of the task
increases; models have a harder time associating a
verb to its subject as sentences get longer and more
complicated. The over-representation of harder-
samples due to the dominance of deeper abstract
syntax trees then serves to explain the striking per-
formance decline.

Control Verbs Focusing on the control gram-
mar first, we remark that both models consistently
score above the random baseline (i.e. 1 divided
by the number of classification targets), seemingly
indicating that some notion of semantic compre-
hension perseveres in the presence of control verb
nestings. Grouping scores by rule is revealing: the
main clause subject is (almost) always correctly de-
tected, regardless of nestedness of the co-occurring
complement and unperturbed by the presence of
word-order variations due to modifiers (AX

1 ). Ver-
bal complements and causatives, on the other hand,
are more often than not incorrectly analyzed, even
in the simplest cases of a bare infinitive in isola-
tion (A3), or a causative occurring at the topmost
branch of the tree (AX
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To procure an explanation for this discrepancy,

we start by measuring accuracy in verbs occurring
under subject- and object control scopes separately.
The remarkably low results hint that models strug-
gle with both kinds of control, while indicating
the presence of an implicit bias slightly favouring

➤ Discontinuous verb-subject dependencies are not inherently captured by 
contextualized (Dutch) BERT/RoBERTa representations 

➤ This was shown by training a probe on Lassy, evaluating on MCFG-generated 
data 

➤ Easily extendable by writing more grammars, and training different probes -> 
work in progress

S(xyzu1u2)  � NP(x) TV(y) NP(z) VC(u1, u2) (A1)

S(xyzuw1vw2)  � NP(x) TV(y) NP(z) NP(u) CV(v) VC(w1, w2) (A2)

VC(x, y)  � TE(x) INFiv(y) (A3)

VC(zx, y)  � TE(x) INFtv(y) NP(z) (A4)

VC(xy, zu0u1)  � NP(x) TE(y) INFc(z) VC(u0, u1) (A5)

VC(xyu, zv1v2)  � NP(x) TE(y) INFc(z) CV(u) VC(v1, v2) (A6)

S(xyzvu1u2)  � NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Am
1 )

S(vyxzu1u2)  � NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Ai
1)

...
(a) 2-MCFG for control verbs.

S(xy1y2)  � PREF(x) SUB(y1, y2) (B1)

SUB(x, y)  � NP(x) INFiv(y) (B2)

SUB(xy, z)  � NP(x) NP(y) INFtv(z) (B3)

SUB(xz, yu)  � NP(x) RV(y) SUB(z, u) (B4)

(b) 2-MCFG for verb raising.

Figure 2: 2-MCFGs capturing the phenomena of Section 3.1.

3.2 Data generation

For our data generation needs, we design a custom
implementation of an MCFG enriched with two
added functionalities. First, we define two sets
Nv, Nn ⇢ N that specify which non-terminals
correspond to verb- and noun phrases respectively.
Every occurrence of a marked non-terminal indi-
cates a unique phrase in the final yield, which we
can trace by traversing the derivation tree. This,
in turn, gives us the possibility of assigning one
or more labels to the constituent substrings that
make up a sentence, according to which phrase(s)
they were part of, even in the case of discontinu-
ous and/or overlapping substrings. Additionally,
we decorate MCFG rules with subject inheritance
schemes. In the simplest case, a scheme may di-
rectly specify the subject noun of a verb, if the non-
terminals of both occur on the same rule, i.e. they
inhabit the same depth of the generation tree. Alter-
natively, when the two occur at different depths, a
scheme may defer the decision by propagating verb
indices down through non-nominal constituents
that will contain the matching subject, but at an
arbitrary nesting depth (see Figure 3 for an exam-
ple). Lexical constants for primitive categories are
populated by means of an automatically compiled
but manually verified lexicon.

3.3 Grammars

We use the above framework to instantiate distinct
grammars for both syntactic phenomena of interest.
Note that the grammars are not purposed for the
construction of exhaustive or accurate analyses of
the phrase structures considered, but rather for the
controlled generation and annotation of suitable
samples.

Control Verb grammar Our first grammar,
given in Figure 2a, models control verb nesting.
The grammar accounts for the mobility of verbal
complements by encoding them as non-terminals
of multiplicity 2, making the grammar a 2-MCFG.
We have two constructors for sentences that com-
bine two noun phrases and a transitive verb with a
verbal complement (A1), optionally under the con-
text of a causative verb and its direct object (A2). In
the base case, verbal complements are constructed
with te and either an intransitive infinitive (A3) or
a transitive infinitive and its object (A4). In the
inductive case, a verbal complement can contain
a control verb in infinitival form together with a
noun phrase and another verbal complement, either
alone or with a causative (A5 and A6). To increase
the variance of generated samples, we also con-
sider two variations for each of the first two rules

MCFG 

Lexicon oriented

Syntax oriented

Generating samples Using an MCFG + annotations indicating verbs and their cor-
responding subjects:
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they were part of, even in the case of discontinu-
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grammars for both syntactic phenomena of interest.
Note that the grammars are not purposed for the
construction of exhaustive or accurate analyses of
the phrase structures considered, but rather for the
controlled generation and annotation of suitable
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Control Verb grammar Our first grammar,
given in Figure 2a, models control verb nesting.
The grammar accounts for the mobility of verbal
complements by encoding them as non-terminals
of multiplicity 2, making the grammar a 2-MCFG.
We have two constructors for sentences that com-
bine two noun phrases and a transitive verb with a
verbal complement (A1), optionally under the con-
text of a causative verb and its direct object (A2). In
the base case, verbal complements are constructed
with te and either an intransitive infinitive (A3) or
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noun phrase and another verbal complement, either
alone or with a causative (A5 and A6). To increase
the variance of generated samples, we also con-
sider two variations for each of the first two rules

Example

(a) de docent ziet [de student] [de hond] [de eend] de oefeningen [helpen] [leren] [eten]

(EN) the teacher sees [the student] [help] [the dog] [teach] [the duck] [to eat] the exercises



Generating Test Data: Control Verbs

Understood subject Control verbs pass their own subject/object to the infinitive
verbal complement that they select for.

(Simple) Example

(a) [de student] belooft de docent [te vertrekken]

(b) de student vraagt [de docent] [te vertrekken]

(EN) the student promises/asks the teacher to leave
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that will contain the matching subject, but at an
arbitrary nesting depth (see Figure 3 for an exam-
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We use the above framework to instantiate distinct
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Note that the grammars are not purposed for the
construction of exhaustive or accurate analyses of
the phrase structures considered, but rather for the
controlled generation and annotation of suitable
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Control Verb grammar Our first grammar,
given in Figure 2a, models control verb nesting.
The grammar accounts for the mobility of verbal
complements by encoding them as non-terminals
of multiplicity 2, making the grammar a 2-MCFG.
We have two constructors for sentences that com-
bine two noun phrases and a transitive verb with a
verbal complement (A1), optionally under the con-
text of a causative verb and its direct object (A2). In
the base case, verbal complements are constructed
with te and either an intransitive infinitive (A3) or
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Probe DesignDESIGNING THE PROBE

➤ BERTje (de Vries et al. 2019) and RobBERT (Delobelle et al. 2020)

N1 N2 N3

V1 x

V2 x

N1        V1          N2               N3          V2

BERT (frozen)

Global Attention (Span Aggregation)

Sparse Attention ⊙

Sentences

1 Sentence examples

(a) [de student] belooft de docent [te vertrekken]
(b) de student vraagt [de docent] [te vertrekken]

(EN) the student promises/asks the teacher to leave

(a) [de student] [vraagt] [de docent] [de opdrachten] [te maken]

(a) de docent ziet [de student] [de hond] [de eend] de oefeningen [helpen] [leren] [eten]

(EN) the teacher sees [the student] [help] [the dog] [teach] [the duck] [to eat] the exercises

(a) de student belooft de docent de opdracht te maken
(b) de student vraagt de docent de opdracht te maken

(c) de student die de docent belooft om de opdracht te maken
(d) de student belooft de docent de opdracht te maken
(e) de docent belooft de student de opdracht te maken

(f ) paper that Bob rejected without reading p (immediately)
(g) *window that Bob sleeps without closing

(h) *student die de docent belooft zonder te begrijpen de opdracht te maken
(i) student die de docent belooft de opdracht zonder te begrijpen te maken
(j ) student die de docent belooft de opdracht te maken zonder te begrijpen
(k) *student die de docent belooft zonder te begrijpen te maken de opdracht

1

1 for verb spans, 1 for noun spans

(Masked) attention weights



Training Data

Lassy-Small is a gold standard dataset of written Dutch, containing ca. 65k sen-
tences, that include both continuous and discontinuous verb-subject dependencies:

TRAINING THE PROBE

➤ Parse DAGs extracted from Lassy-Small, a gold standard corpus of written Dutch (Van 
Noord 2013) 

➤ These contain both continuous and discontinuous verb-subject dependencies
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Results

Validation vs test results The prober works fine, but our generated test sets are very
challenging:

# Nouns Tree Depth Rule
Model 2 3 4 5 2 3 4 AX

1 AX
2 A3 A4 A5 A6

BERTje 81.1 58.8 50.5 42.9 61.8 52.7 46.8 100 67 43.1 34.6 36.1 27.1

RobBERT 73 52.8 42.4 35.9 58.3 47.2 38.8 93.6 58.1 41.2 19.6 21 17

(a) Control Verb Grammar
# Nouns Tree Depth Rule

Model 2 3 4 5 2 3 4 5 6 B2 B3 B4

BERTje 75.6 52.4 33.5 25.5 92.2 66.4 40.5 29 23 53.4 53.8 36.7

RobBERT 46.3 37.2 24.5 11.4 65.6 36.9 33.6 19.4 12.6 89.1 24.3 12.9

(b) Verb Raising Grammar

Table 1: Seed-averaged accuracy scores for the two grammars of Section 3.3, grouped by various parameters. The
X superscript denotes inclusion and aggregation of the adverbial modifier variants for the corresponding rules.

of Augustinus (2015): we gather 9 subject- and
33 object-control verbs, 2 causatives and 7 raising
verbs. A comprehensive set of around 10 000 gen-
dered nouns (the ones that have de as their article)
is finally obtained from the Algemeen Nederlands
Woordenboek.4 In the verb raising grammar, we
trigger subordination by prefixing generated ex-
pressions with the string Iemand ziet (‘somebody
sees’).

From each generated abstract tree, we obtain 10
syntactically identical sentences that vary only in
their meaning by performing controlled sampling
over the lexicon; the very large product space of
constants guarantees sample uniqueness. This pa-
rameterization means we can inspect and group
samples on the basis of either their surface form
or their underlying tree, a property that will come
when analyzing model performance. To ensure nat-
urality and consistency in the model’s input, we
capitalize and punctuate generated sentences in a
final post-processing step.

4.2 Results

The trained probes are tested on our generated data,
yielding a prediction for every verb occurrence. For
each model, we report the seed-averaged accuracy
on each experiment in Table 2: test performance
is substantially lower than in the validation bench-
marks.

Model Lassy Control Raising

BERTje 97.6 48 43.1

RobBERT 92.5 40.6 29.2

Table 2: Model accuracy on the validation data (Lassy)
versus the test data (Control, Raising).

4https://anw.ivdnt.org

To facilitate analysis, we group predictions ac-
cording to their context, namely (i) number of noun
phrases in the sentence (classification targets), (ii)
maximal depth of the underlying abstract syntax
tree and (iii) production rule, and aggregate them
into accuracy scores, presented in Table 1. This
breakdown suggests that model performance re-
mains passable for the easier portion of the dataset,
but degrades quickly as the difficulty of the task
increases; models have a harder time associating a
verb to its subject as sentences get longer and more
complicated. The over-representation of harder-
samples due to the dominance of deeper abstract
syntax trees then serves to explain the striking per-
formance decline.

Control Verbs Focusing on the control gram-
mar first, we remark that both models consistently
score above the random baseline (i.e. 1 divided
by the number of classification targets), seemingly
indicating that some notion of semantic compre-
hension perseveres in the presence of control verb
nestings. Grouping scores by rule is revealing: the
main clause subject is (almost) always correctly de-
tected, regardless of nestedness of the co-occurring
complement and unperturbed by the presence of
word-order variations due to modifiers (AX

1 ). Ver-
bal complements and causatives, on the other hand,
are more often than not incorrectly analyzed, even
in the simplest cases of a bare infinitive in isola-
tion (A3), or a causative occurring at the topmost
branch of the tree (AX

2 ).
To procure an explanation for this discrepancy,

we start by measuring accuracy in verbs occurring
under subject- and object control scopes separately.
The remarkably low results hint that models strug-
gle with both kinds of control, while indicating
the presence of an implicit bias slightly favouring

Investigating further Because we are using a grammar that generates syntax trees,
we can inspect the results, filtering by the complexity of the generated sentences:

# Nouns Tree Depth Rule
Model 2 3 4 5 2 3 4 AX

1 AX
2 A3 A4 A5 A6

BERTje 81.1 58.8 50.5 42.9 61.8 52.7 46.8 100 67 43.1 34.6 36.1 27.1

RobBERT 73 52.8 42.4 35.9 58.3 47.2 38.8 93.6 58.1 41.2 19.6 21 17

(a) Control Verb Grammar
# Nouns Tree Depth Rule

Model 2 3 4 5 2 3 4 5 6 B2 B3 B4

BERTje 75.6 52.4 33.5 25.5 92.2 66.4 40.5 29 23 53.4 53.8 36.7

RobBERT 46.3 37.2 24.5 11.4 65.6 36.9 33.6 19.4 12.6 89.1 24.3 12.9

(b) Verb Raising Grammar

Table 1: Seed-averaged accuracy scores for the two grammars of Section 3.3, grouped by various parameters. The
X superscript denotes inclusion and aggregation of the adverbial modifier variants for the corresponding rules.
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samples due to the dominance of deeper abstract
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indicating that some notion of semantic compre-
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nestings. Grouping scores by rule is revealing: the
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tected, regardless of nestedness of the co-occurring
complement and unperturbed by the presence of
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are more often than not incorrectly analyzed, even
in the simplest cases of a bare infinitive in isola-
tion (A3), or a causative occurring at the topmost
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Recap: Doing it the Diamond Way

np

hij
`

〈hij〉su ` ♦sunp
[♦I]

(♦sunp\s)/♦vcinf

zal
`

haar

np `

〈haar〉obj ` ♦objnp
[♦I]

iets

np `

〈iets〉obj ` ♦objnp
[♦I]

zeggen

♦objnp\inf
`

〈iets〉obj · zeggen ` inf
[\E]

〈〈iets〉obj · zeggen〉vc ` ♦vcinf
[♦I] laten

♦vcinf\(♦objnp\inf)
`

〈〈iets〉obj · zeggen〉vc · laten ` ♦objnp\inf
[\E]

〈haar〉obj · (〈〈iets〉obj · zeggen〉vc · laten) ` inf
[\E]

〈〈haar〉obj · (〈〈iets〉obj · zeggen〉vc · laten)〉vc ` ♦vcinf
[♦I] willen

♦vcinf\inf
`

〈〈haar〉obj · (〈〈iets〉obj · zeggen〉vc · laten)〉vc · willen ` inf
[\E]

〈〈〈haar〉obj · (〈〈iets〉obj · zeggen〉vc · laten)〉vc · willen〉vc ` ♦vcinf
[♦I]

zal · 〈〈〈haar〉obj · (〈〈iets〉obj · zeggen〉vc · laten)〉vc · willen〉vc ` ♦sunp\s
[/E]

〈hij〉su · (zal · 〈〈〈haar〉obj · (〈〈iets〉obj · zeggen〉vc · laten)〉vc · willen〉vc) ` s
[\E]

ACG all the way

d†estring = hij· zal· haar·iets· willen·laten·zeggen
d†esem = will (want Mvc((let Mvc(say Mobj something)) Mobj her))Msu he

d†epair = [(zal,hij),(willen,hij),(laten,hij),(zeggen,haar)]

[Moortgat et al., 2022]



Doing it the Diamond Way: Samples

273 Samples

AST x3 (x0 d7) (h1 (f1 d5 d1))
Surface hij zal dreigen iets te zeggen

Semantics (zal (♦vc(dreigen (♦vc(te (♦vc(zeggen (♦obj1iets)))))))) (♦suhij)
Pairing [(zal,hij),(dreigen,hij),(zeggen,hij)]

AST r0 (g0 (h0(h1 (f1 d5 d1)) d6) d2)
Surface hij zal iets willen proberen te zeggen

Semantics (zal (♦vc(willen (♦vc(proberen (♦vc(te (♦vc(zeggen (♦obj1iets)))))))))) (♦suhij)
Pairing [(zal,hij),(willen,hij),(proberen,hij),(zeggen,hij)]

AST x3 (x1 (x0 d7) d2) (h1 (f1 d5 d1))
Surface hij zal willen dreigen iets te zeggen

Semantics (zal (♦vc(willen (♦vc(dreigen (♦vc(te (♦vczeggen (♦obj1iets)))))))))) (♦suhij)
Pairing [(zal,hij),(willen,hij),(dreigen,hij),(zeggen,hij)]

...



Doing it the Diamond Way: Populating the lexicon

The lexicon

Category Description Examples

INF0 intransitive infinitive vertrekken, stemmen, verliezen, ...

INF1 transitive infinitive with inanimate object zeggen, begrijpen, merken, ...

INF1A transitive infinitive, animate object ontmoeten, bedanken, kennen, ...

IVR0 obligatory verb raiser willen, zullen, moeten, ...

IVR1 obligatory verb raiser, subject flipper laten, doen

IVR2 non-obligatory verb raiser proberen, weigeren, trachten, ...

INF2 extraposition proberen, weigeren, trachten, ...

INF3 extraposition, object control verzoeken, dwingen, verplichten, ...

INF4 extraposition, subject control beloven, verzekeren, zweren, ...

OBJ1A animate direct object Karin, Wouter, ...

OBJ1I inanimate direct object iets, veel, een ding, ...

OBJ2 indirect object Karin, Wouter, ...



Results

Validation vs test results The probe does not perform as well on the generated data:
Malin 2022: Experiments 5

Table 1 Accuracy and baseline results on the validation (Lassy) and test set.

Validation set (Lassy) Test set (generated)

Accuracy 97.60 79.47
Random Baseline 13.24 39.24

which allows us to better tune and adjust the focus of our quantitative analysis. In
Appendix 4 we provide a listing of all verbal categories used through the generation,
together with a short description and a few example lexical items; the list might
prove useful in following along with our analysis in the next few sections.

3.1 Number of Nouns

As a preliminary step, we measure test set performance in relation to the number
of subject candidates in the sentence (i.e. number of nouns), which we imagine can
confound the model’s ability to make a correct semantic judgement, and present our
results in Table 2.

Table 2 Accuracy results by number of nouns.

Number of nouns 2 3 4

Accuracy 86.87 75.66 68.76
Random Baseline 50.00 33.33 25.00

As expected, the accuracy does indeed show a correlation to the number of
attractors. The correlation is, however, rather weak; accuracy is surprisingly low in
comparison to the validation set even in the presence of a single attractor, and only
moderately declines as they increase, remaining consistently high above the random
baseline.

3.2 Verbal Type

Since the number of nouns is not that telling of a feature in distinguishing correct
versus erroneous predictions, the next thing to group results by by is the type of
verb under inspection. We distinguish nine verb categories, displayed in Table 9
in the Appendix. The verb categories we subdivide in three groups: first, there are
infinitives that do not select for a verbal complement, which we refer to as plain
infintives (INF0, INF1, INF1A) and that di�er in their transitivity, i.e. selecting only

By number of nouns Again, the more nouns, the more challenging the test case:

Malin 2022: Experiments 5

Table 1 Accuracy and baseline results on the validation (Lassy) and test set.

Validation set (Lassy) Test set (generated)

Accuracy 97.60 79.47
Random Baseline 13.24 39.24

which allows us to better tune and adjust the focus of our quantitative analysis. In
Appendix 4 we provide a listing of all verbal categories used through the generation,
together with a short description and a few example lexical items; the list might
prove useful in following along with our analysis in the next few sections.

3.1 Number of Nouns

As a preliminary step, we measure test set performance in relation to the number
of subject candidates in the sentence (i.e. number of nouns), which we imagine can
confound the model’s ability to make a correct semantic judgement, and present our
results in Table 2.

Table 2 Accuracy results by number of nouns.

Number of nouns 2 3 4

Accuracy 86.87 75.66 68.76
Random Baseline 50.00 33.33 25.00

As expected, the accuracy does indeed show a correlation to the number of
attractors. The correlation is, however, rather weak; accuracy is surprisingly low in
comparison to the validation set even in the presence of a single attractor, and only
moderately declines as they increase, remaining consistently high above the random
baseline.

3.2 Verbal Type

Since the number of nouns is not that telling of a feature in distinguishing correct
versus erroneous predictions, the next thing to group results by by is the type of
verb under inspection. We distinguish nine verb categories, displayed in Table 9
in the Appendix. The verb categories we subdivide in three groups: first, there are
infinitives that do not select for a verbal complement, which we refer to as plain
infintives (INF0, INF1, INF1A) and that di�er in their transitivity, i.e. selecting only



Raising, Extraposition, and Infinitives

Raising

OBJ2 OBJI1 IVR0 IVR1 INF1
hij zal haar iets willen laten zeggen

he will her something want let say

Extraposition

OBJ2 INF3 OBJI1 TE INF1
hij zal haar dwingen iets te zeggen

he will her force something to say

By verbal type Extraposition slightly easier, as there is no cluster. Infinitives are
worse, because they typically are far removed from their understood subjects:

6 Name of First Author and Name of Second Author

a subject or additionally an object, and their selectional preferences (animate vs.
inanimate objects). Next, we group three categories of verb raisers (IVR0, IVR1,
IVR2), that induce a semantically discontinuous cluster. Finally, we distinguish
extraposition verbs (INF2, INF3, INF4) that arrange their arguments in a continuous
order, distinguishing between object control (INF3), subject control (INF4) and
non-control (INF2) verbs.

Table 3 Accuracy results by verbal type.

Verbal type Raising Extraposition Infinitive

Accuracy 81.00 87.03 68.77
Random 39.86 38.27 39.24

Table 3 indicates that the verbal type is a stronger indicator of model performance:
accuracy varies between types despite the baselines being comparable. Infinitives
governing raising constructions are harder to disentangle compared to their extra-
posing relatives, and infinitives are remarkably worse o� than either. We provide a
further specification of accuracy broken down by individual verb categories in Table
10, but note that these results do not show a striking di�erence between individual
verb categories.

3.3 Verb Dominance

To tell what exactly it is that makes infinitives so di�cult for BERTje to understand,
we filter predictions of verbs that occur in the context of a nested subordinate clause,
and group them first by the type of the clause’s governing verb, and afterwards by
the type of the dependent verb.

Table 4 Accuracy results by dominance, distinguishing verb raisers and extraposition verbs.

Dominated verb, grouped by verbal type

Dominated by raising Overall Raising Extraposition Infinitive

Accuracy 76.18 76.23 77.76 74.68
Random Baseline 39.86 41.23 38.60 39.76

Dominated by extraposition

Accuracy 66.70 67.35 85.35 59.62
Random Baseline 38.27 38.60 36.84 38.30



Verb Dominance

Dominance

OBJ2 OBJI1 IVR0 IVR1 INF1
hij zal haar iets willen laten zeggen

he will her something want let say

INF2 OBJ2 OBJI1 TE IVR1 INF1
hij zal proberen haar iets te laten zeggen

he will try her something to let say

Results Verbs under the scope of an extraposition verb are more challenging!

6 Name of First Author and Name of Second Author

a subject or additionally an object, and their selectional preferences (animate vs.
inanimate objects). Next, we group three categories of verb raisers (IVR0, IVR1,
IVR2), that induce a semantically discontinuous cluster. Finally, we distinguish
extraposition verbs (INF2, INF3, INF4) that arrange their arguments in a continuous
order, distinguishing between object control (INF3), subject control (INF4) and
non-control (INF2) verbs.

Table 3 Accuracy results by verbal type.

Verbal type Raising Extraposition Infinitive

Accuracy 81.00 87.03 68.77
Random 39.86 38.27 39.24

Table 3 indicates that the verbal type is a stronger indicator of model performance:
accuracy varies between types despite the baselines being comparable. Infinitives
governing raising constructions are harder to disentangle compared to their extra-
posing relatives, and infinitives are remarkably worse o� than either. We provide a
further specification of accuracy broken down by individual verb categories in Table
10, but note that these results do not show a striking di�erence between individual
verb categories.

3.3 Verb Dominance

To tell what exactly it is that makes infinitives so di�cult for BERTje to understand,
we filter predictions of verbs that occur in the context of a nested subordinate clause,
and group them first by the type of the clause’s governing verb, and afterwards by
the type of the dependent verb.

Table 4 Accuracy results by dominance, distinguishing verb raisers and extraposition verbs.

Dominated verb, grouped by verbal type

Dominated by raising Overall Raising Extraposition Infinitive

Accuracy 76.18 76.23 77.76 74.68
Random Baseline 39.86 41.23 38.60 39.76

Dominated by extraposition

Accuracy 66.70 67.35 85.35 59.62
Random Baseline 38.27 38.60 36.84 38.30



Verb Dominance

An orthogonal view we distinguish the different subcategories of verbs that govern
other verbs:

Malin 2022: Experiments 7

Table 4 displays the aggregated accuracy scores. As before, we observe a lower
overall accuracy in infinitives under an extraposition construction. Despite an ex-
traposing verb being easier to pair to its subject compared to a raising one, verbs
under the immediate scope of an extraposition are in fact harder to identify correctly!
Along the same lines, the disproportionately low performance in the infinitive verbs
of Table 3 is now explained by a striking performance drop (ca 20%) in the case
of the governing verb being an extraposer. What is making the territory muddier,
however, is an inverse trend in the case of an extraposition under the case of an
extraposition.

To add to the story, we separately subdivide the overall accuracy for all verbs
governed by a raiser or extraposition verb, into the specific categories that make up
the raisers and extraposition verbs, in order to o�er an orthogonal view on the same
problem. The numbers in Table 5 display accuracy results for each subcategory for
raisers and extraposition verbs.

Table 5 Accuracy results by dominance, for verb raisers and extraposition verbs, where the overall
accuracy is broken down by individual categories.

Dominating verb, by subcategory

Dominated by raising Overall IVR0 IVR1 IVR2

Accuracy 76.18 78.54 71.41 77.95
Random Baseline 39.86 41.06 37.09 41.05

Dominated by extraposition Overall INF2 INF3 INF4

Accuracy 66.70 86.74 57.12 47.12
Random Baseline 38.27 42.58 35.13 35.13

The results suggest that it is not extraposition per se that is the problem; if
anything, performance is higher for clauses in an extraposition setting under the
INF2 category rather than a clustering setting under the IVR2 category, despite the
two sharing the same lexical vocabulary! The problem, rather, lies in the semantic
control properties exhibited by the control verbs in categories INF3 (object control)
and INF4 (subject control).

3.3.1 Subject versus object control

To further deepen the analysis, we perform a variation on the main experiment. In
this setup, we gather all pairs of sentences that di�er only in the choice of a subject
control verb (INF4) or an object control verb (INF3). Such cases are syntactically
equivalent, however the control properties of the verb mean that either their subject or
their indirect object gets selected as the understood subject in the verbal complement,
leading to a di�erent expected prediction of subjecthood for the verb that is under

It’s all about control

OBJ2 INF4/INF3 OBJI1 TE INF1
hij zal haar beloven/dwingen iets te zeggen

he will her promise/force something to say



Verb Dominance

An orthogonal view we distinguish the different subcategories of verbs that govern
other verbs:

Malin 2022: Experiments 7

Table 4 displays the aggregated accuracy scores. As before, we observe a lower
overall accuracy in infinitives under an extraposition construction. Despite an ex-
traposing verb being easier to pair to its subject compared to a raising one, verbs
under the immediate scope of an extraposition are in fact harder to identify correctly!
Along the same lines, the disproportionately low performance in the infinitive verbs
of Table 3 is now explained by a striking performance drop (ca 20%) in the case
of the governing verb being an extraposer. What is making the territory muddier,
however, is an inverse trend in the case of an extraposition under the case of an
extraposition.

To add to the story, we separately subdivide the overall accuracy for all verbs
governed by a raiser or extraposition verb, into the specific categories that make up
the raisers and extraposition verbs, in order to o�er an orthogonal view on the same
problem. The numbers in Table 5 display accuracy results for each subcategory for
raisers and extraposition verbs.

Table 5 Accuracy results by dominance, for verb raisers and extraposition verbs, where the overall
accuracy is broken down by individual categories.

Dominating verb, by subcategory

Dominated by raising Overall IVR0 IVR1 IVR2

Accuracy 76.18 78.54 71.41 77.95
Random Baseline 39.86 41.06 37.09 41.05

Dominated by extraposition Overall INF2 INF3 INF4

Accuracy 66.70 86.74 57.12 47.12
Random Baseline 38.27 42.58 35.13 35.13

The results suggest that it is not extraposition per se that is the problem; if
anything, performance is higher for clauses in an extraposition setting under the
INF2 category rather than a clustering setting under the IVR2 category, despite the
two sharing the same lexical vocabulary! The problem, rather, lies in the semantic
control properties exhibited by the control verbs in categories INF3 (object control)
and INF4 (subject control).

3.3.1 Subject versus object control

To further deepen the analysis, we perform a variation on the main experiment. In
this setup, we gather all pairs of sentences that di�er only in the choice of a subject
control verb (INF4) or an object control verb (INF3). Such cases are syntactically
equivalent, however the control properties of the verb mean that either their subject or
their indirect object gets selected as the understood subject in the verbal complement,
leading to a di�erent expected prediction of subjecthood for the verb that is under

It’s all about control

OBJ2 INF3/4 OBJI1 TE INF1
hij zal haar [MASK] iets te zeggen

he will her [MASK] something to say

8 Name of First Author and Name of Second Author

dominance by the control verb. In these instances, we mask the control verb, meaning
that the language model (and by extension the probing model on top) does not have
access to the lexical instantiation that could indicate subject or object control. By
asking the prober to make a decision for the verb governed by the masked control
verb, we can then quantify whether the model has a preferential bias towards either
of the two readings (i.e. measure how many times it selected the subject control
interpretation, the object control interpretation, or something di�erent altogether).
Table 6 displays these three numbers.

Table 6 Results for the masked subject vs. object control verb experiment. Each number indicates
the percentage of cases in which the model prefers a certain interpretation.

Object (INF3) Subject (INF4) Other

Control preference of governed verb 35.08 59.20 5.72

Here we observe a pattern that appears to go against the results in Table 5. Where,
in the explicit presence of the control verb, the interpretation of the governed verb
was easier to detect in the case of an object control verb, we see that in the masked
case, the model typically favours the subject control interpretation.

In other words, the language model shows an inherent bias towards the subject
control reading, which gets skewed by the lexical insertion of a concrete verb.
Alternatively, if the model is presented a sentence containing a subject control
verb, the model would have done a better job identifying subsequent subjecthood
predictions if the control verb was masked.

3.3.2 Number of preceding flips

The above insights guide us towards a potential explanation in the semantic, rather
than syntactic, behavior of the governing verb. We note that some verbs flip the so-
called “understood” subject of the subordinate verbs nested deeper in the clause, with
the e�ect recursing when more than one such verbs take scope (one may imagine
the process as a chain of logical negations). In Example (1), for instance, it is ‘hij’
that acts as the subject of ‘dreigen’ and ‘laten’ but the understood subject of the
complement ‘vertrekken’ is now ‘haar’.

(1) hij
he

zal
will

dreigen
threaten

haar
her

te
to

laten
let

vertrekken
leave

‘he will threaten to let her leave’

On the data level, we can compute, for each verb-subject dependency, how many
subject flips it occurs under, and compute the accuracy accordingly, as presented in
Table 7.



Word order variations

Semantic equivalence We can group samples that originate from different ASTs,
have identical semantics, but different surface realizations:

Malin 2022: Experiments 9

Table 7 Accuracy results by number of preceding flips.

Number of preceding flips 0 1 2

Accuracy 86.80 68.47 53.57
Random 40.27 38.46 29.17

The results in the table, as anticipated, show that accuracy drops in the presence
of subject flips. This corroborates our previous hypothesis that the semantics of
control verbs (and those of the subject flipping verb raisers ‘laten’ and ’doen’)
induce linguistically complex cases, that are in turn challenging for the language
model to analyze.

3.4 Semantic Equivalence, Syntactic Variation

Our dataset contains verbs that necessarily induce a cluster or extraposition construc-
tion, but also verbs that may induce either. The latter are of particular interest, as
they produce drastically di�ering abstract syntax trees, that in turn get materialized
as distinct permutations of the same lexical items, but with identical meanings, i.e.
semantic terms; see Example (2) below.

(2) a. hij
he

zal
will

haar
her

proberen[IVR2]
try

te
to

willen
want

ontmoeten
meet

b. hij
he

zal
will

proberen[INF2]
try

haar
her

te
to

willen
want

ontmoeten
meet

‘he will try to want to meet her’

To examine whether the model exhibits a preference towards either of the two con-
structions, we identify samples that get assigned identical semantic terms (modulo
the IVR2/INF2 distinction), di�ering only in the word order of their respective sur-
face forms. Across all such pairs, we aggregate accuracy and baseline scores based
on the construction type (raising or extraposition), and the position of each inspected
verb within the AST (that being the ambiguous verb itself, or a verb occurring above
or below it in the tree).

The results in Table 8 solidify our previous evidence that extraposition contexts
are overall easier for the model to resolve, regardless of the syntactic position of the
verb under scrutiny.

Results Extra confirmation that extraposition is the easier construction to recognize.

10 Name of First Author and Name of Second Author

Table 8 Accuracy results for raising vs. extraposition constructions, with identical semantic terms.

Context in the sentence

Raising construction Above Verb Below

Accuracy 95.09 86.22 78.15
Random Baseline 42.54 41.47 41.44

Extraposition construction

Accuracy 96.49 93.04 78.50
Random Baseline 42.54 41.48 41.44

4 Conclusion
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Epilogue



Conclusion of the day

I Evaluating tensor-based models is possible, but quickly gets intractable,

I We seem to always ‘lose’ to BERT,

I But BERT is not the answer: we showed that BERT embeddings are not (inher-
ently) capable of recognizing verb-subject dependencies (in Dutch).

I Types to the rescue? We will have to put effort in downstream tasks that can
make good use of lambda terms, or require subtle linguistic reasoning



Conclusion of the week

I Compositionality as a guiding principle for semantic reasoning

I Once the toolkit is in place, we can address the linguistic subtleties that models
like BERT may not understand all too well

I The dream: integrating compositional tools/methods with neural reasoning

I For example:

1. Using syntactic/semantic terms as input on downstream tasks

2. Merging syntactic/semantic terms with BERT embeddings [Tziafas et al.,
2021]

DIY What would you do?

I See next week’s workshop for the latest developments in the field

I Or read up at: http://dx.doi.org/10.4204/EPTCS.366

We thank the NWO for supporting this project: https://compositioncalculus.sites.uu.nl/

http://dx.doi.org/10.4204/EPTCS.366
https://compositioncalculus.sites.uu.nl/


Apotheosis
Dependency enhancement

function types A\B ; }dA\B vc: verbal complement

haar

np

hhaariobj ` }objnp
}I

iets

np

hietsiobj ` }objnp
}I

zeggen

}objnp\inf

hietsiobj · zeggen ` inf
\E

hhietsiobj · zeggenivc ` }vcinf
}I

laten

}vcinf\(}objnp\inf)

hhietsiobj · zeggenivc · laten ` }objnp\inf
\E

hhaariobj · (hhietsiobj · zeggenivc · laten) ` inf
\E

hhhaariobj · (hhietsiobj · zeggenivc · laten)ivc ` }vcinf
}I

willen

}vcinf\inf

hhhaariobj · (hhietsiobj · zeggenivc · laten)ivc · willen ` inf
\E

(want Mvc((let Mvc(say Mobj something)) Mobj her))

2.1. Categorical Composition 57

(s\s)/s

/

np np\s
Bill sings and

\

\

s

\

Hannah dances
np\snp

FIGURE 2.5: Information flow for the derivation in Figure 2.4.

A A\B

\

B

 

A A B

B

B

/

A AAA\B

B

 

B

FIGURE 2.6: Translation of the Lambek diagrams for left/right appli-
cation to string diagrams of a compact closed category.

Mind the gaps (Expert level)

Your turn compute the vector-based interpretation for some more challenging exam-
ples of parasitic gaps in [Moortgat et al., 2020]

I papers that Bob rejected (immediately) without reading p (carefully)

non-peripheral gaps

I security breach that a report about p in the NYT made public

co-argument gaps

Diagrammatically

24

privacy breach

N

made

report

N

a

N N

about

N N N N

in

N

NYT

NNN N N N S N

that public

N N SSN NS N

Figure 13: Semantic information flow for the co-argument parasitic gap (1e, initial form).
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: CONTRADICTION

Skipgram for adjectives

Context we swap the noun context for only the contexts for adjective-noun combi-
nations, to learn a single matrix per adjective [Maillard and Clark, 2015]:

APPLE

PICK

ONE

RIPE

FROM

THE

TREE

CICERO

SEXTANT

DEFER

Figure 1: Learning the vector for apple in the con-
text pick one ripe apple from the tree. The vector
for apple is updated in order to increase the inner
product with green vectors and decrease it with red
ones, which are negatively sampled.

adjective-noun similarity dataset from Mitchell
and Lapata (2010). Finally, the tensor-based skip-
gram model also leads to improved performance in
the detection of semantically anomalous adjective-
noun phrases, compared to previous work.

2 A tensor-based skip-gram model

Our model treats adjectives as linear maps over the
vector space of noun meanings, encoded as matri-
ces. The algorithm works in two stages: the first
stage learns the noun vectors, as in a standard skip-
gram model, and the second stage learns the adjec-
tive matrices, given fixed noun vectors.

2.1 Training of nouns

To learn noun vectors, we use a skip-gram model
with negative sampling (Mikolov et al., 2013).
Each noun n in the vocabulary is assigned two d-
dimensional vectors: a content vector n, which
constitutes the embedding, and a context vector
n1. For every occurrence of a noun n in the corpus,
the embeddings are updated in order to maximise
the objective function

ÿ

c1PC
log �pn ¨ c1q `

ÿ

c1PC
log �p´n ¨ c1q, (1)

where C is a set of contexts for the current noun,
and C is a set of negative contexts. The contexts
are taken to be the vectors of words in a fixed win-
dow around the noun, while the negative contexts
are vectors for k words sampled from a unigram
distribution raised to the power of 3{4 (Goldberg,
2014). In our experiments, we have set k “ 5.

UNRIPE APPLE

THE

GREEN

SMALL

TASTED

VERY

SOUR

APPLEUNRIPE X =

SAYS

BRAILLE

OMEN

=

Figure 2: Learning the matrix for unripe in the
context the green small unripe apple tasted very
sour. The matrix for unripe is updated to increase
the inner product of the vector for unripe apple
with green vectors and decrease it with red ones.

After each step, both content and context vec-
tors are updated via back-propagation. This pro-
cedure leads to noun embeddings (content vectors)
which have a high inner product with the vectors
of words in the context of the noun, and a low
inner product with vectors of negatively sampled
words. Fig. 1 shows this intuition.

2.2 Training of adjectives
Each adjective a in the vocabulary is assigned a
matrix A, initialised to the identity plus uniform
noise. First, all adjective-noun phrases pa, nq are
extracted from the corpus. For each pa, nq pair, the
corresponding adjective matrix A and noun vec-
tor n are multiplied to compute the adjective-noun
vector An. The matrix A is then updated to max-
imise the objective function

ÿ

c1PC
log �pAn ¨ c1q `

ÿ

c1PC
log �p´An ¨ c1q. (2)

The contexts C are taken to be the vectors of words
in a window around the adjective-noun phrase,
while the negative contexts C are again vectors of
randomly sampled words. Matrices are initialised
to the identity, while the context vectors C are the
results of Section 2.1.

Finally, the matrix A is updated via back-
propagation. Equation 2 means that the induced
matrices will have the following property: when
multiplying the matrix with a noun vector, the re-
sulting adjective-noun vector will have a high in-
ner product with words in the context window of
the adjective-noun phrase, and low inner product
for negatively sampled words. This is exemplified
in Figure 2.
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